Cargando…

Identification of protein W, the elusive sixth subunit of the Rhodopseudomonas palustris reaction center-light harvesting 1 core complex

The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure o...

Descripción completa

Detalles Bibliográficos
Autores principales: Jackson, Philip J., Hitchcock, Andrew, Swainsbury, David J.K., Qian, Pu, Martin, Elizabeth C., Farmer, David A., Dickman, Mark J., Canniffe, Daniel P., Hunter, C. Neil
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Pub. Co 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764122/
https://www.ncbi.nlm.nih.gov/pubmed/29126780
http://dx.doi.org/10.1016/j.bbabio.2017.11.001
Descripción
Sumario:The X-ray crystal structure of the Rhodopseudomonas (Rps.) palustris reaction center-light harvesting 1 (RC-LH1) core complex revealed the presence of a sixth protein component, variably referred to in the literature as helix W, subunit W or protein W. The position of this protein prevents closure of the LH1 ring, possibly to allow diffusion of ubiquinone/ubiquinol between the RC and the cytochrome bc(1) complex in analogous fashion to the well-studied PufX protein from Rhodobacter sphaeroides. The identity and function of helix W have remained unknown for over 13 years; here we use a combination of biochemistry, mass spectrometry, molecular genetics and electron microscopy to identify this protein as RPA4402 in Rps. palustris CGA009. Protein W shares key conserved sequence features with PufX homologs, and although a deletion mutant was able to grow under photosynthetic conditions with no discernible phenotype, we show that a tagged version of protein W pulls down the RC-LH1 complex. Protein W is not encoded in the photosynthesis gene cluster and our data indicate that only approximately 10% of wild-type Rps. palustris core complexes contain this non-essential subunit; functional and evolutionary consequences of this observation are discussed. The ability to purify uniform RC-LH1 and RC-LH1-protein W preparations will also be beneficial for future structural studies of these bacterial core complexes.