Cargando…

Obesogenic diets alter metabolism in mice

Obesity and accompanying metabolic disease is negatively correlated with lung health yet the exact mechanisms by which obesity affects the lung are not well characterized. Since obesity is associated with lung diseases as chronic bronchitis and asthma, we designed a series of experiments to measure...

Descripción completa

Detalles Bibliográficos
Autores principales: Showalter, Megan R., Nonnecke, Eric B., Linderholm, A. L., Cajka, Tomas, Sa, Michael R., Lönnerdal, Bo, Kenyon, Nicholas J., Fiehn, Oliver
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764261/
https://www.ncbi.nlm.nih.gov/pubmed/29324762
http://dx.doi.org/10.1371/journal.pone.0190632
_version_ 1783292026137083904
author Showalter, Megan R.
Nonnecke, Eric B.
Linderholm, A. L.
Cajka, Tomas
Sa, Michael R.
Lönnerdal, Bo
Kenyon, Nicholas J.
Fiehn, Oliver
author_facet Showalter, Megan R.
Nonnecke, Eric B.
Linderholm, A. L.
Cajka, Tomas
Sa, Michael R.
Lönnerdal, Bo
Kenyon, Nicholas J.
Fiehn, Oliver
author_sort Showalter, Megan R.
collection PubMed
description Obesity and accompanying metabolic disease is negatively correlated with lung health yet the exact mechanisms by which obesity affects the lung are not well characterized. Since obesity is associated with lung diseases as chronic bronchitis and asthma, we designed a series of experiments to measure changes in lung metabolism in mice fed obesogenic diets. Mice were fed either control or high fat/sugar diet (45%kcal fat/17%kcal sucrose), or very high fat diet (60%kcal fat/7% sucrose) for 150 days. We performed untargeted metabolomics by GC-TOFMS and HILIC-QTOFMS and lipidomics by RPLC-QTOFMS to reveal global changes in lung metabolism resulting from obesity and diet composition. From a total of 447 detected metabolites, we found 91 metabolite and lipid species significantly altered in mouse lung tissues upon dietary treatments. Significantly altered metabolites included complex lipids, free fatty acids, energy metabolites, amino acids and adenosine and NAD pathway members. While some metabolites were altered in both obese groups compared to control, others were different between obesogenic diet groups. Furthermore, a comparison of changes between lung, kidney and liver tissues indicated few metabolic changes were shared across organs, suggesting the lung is an independent metabolic organ. These results indicate obesity and diet composition have direct mechanistic effects on composition of the lung metabolome, which may contribute to disease progression by lung-specific pathways.
format Online
Article
Text
id pubmed-5764261
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-57642612018-01-23 Obesogenic diets alter metabolism in mice Showalter, Megan R. Nonnecke, Eric B. Linderholm, A. L. Cajka, Tomas Sa, Michael R. Lönnerdal, Bo Kenyon, Nicholas J. Fiehn, Oliver PLoS One Research Article Obesity and accompanying metabolic disease is negatively correlated with lung health yet the exact mechanisms by which obesity affects the lung are not well characterized. Since obesity is associated with lung diseases as chronic bronchitis and asthma, we designed a series of experiments to measure changes in lung metabolism in mice fed obesogenic diets. Mice were fed either control or high fat/sugar diet (45%kcal fat/17%kcal sucrose), or very high fat diet (60%kcal fat/7% sucrose) for 150 days. We performed untargeted metabolomics by GC-TOFMS and HILIC-QTOFMS and lipidomics by RPLC-QTOFMS to reveal global changes in lung metabolism resulting from obesity and diet composition. From a total of 447 detected metabolites, we found 91 metabolite and lipid species significantly altered in mouse lung tissues upon dietary treatments. Significantly altered metabolites included complex lipids, free fatty acids, energy metabolites, amino acids and adenosine and NAD pathway members. While some metabolites were altered in both obese groups compared to control, others were different between obesogenic diet groups. Furthermore, a comparison of changes between lung, kidney and liver tissues indicated few metabolic changes were shared across organs, suggesting the lung is an independent metabolic organ. These results indicate obesity and diet composition have direct mechanistic effects on composition of the lung metabolome, which may contribute to disease progression by lung-specific pathways. Public Library of Science 2018-01-11 /pmc/articles/PMC5764261/ /pubmed/29324762 http://dx.doi.org/10.1371/journal.pone.0190632 Text en © 2018 Showalter et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Showalter, Megan R.
Nonnecke, Eric B.
Linderholm, A. L.
Cajka, Tomas
Sa, Michael R.
Lönnerdal, Bo
Kenyon, Nicholas J.
Fiehn, Oliver
Obesogenic diets alter metabolism in mice
title Obesogenic diets alter metabolism in mice
title_full Obesogenic diets alter metabolism in mice
title_fullStr Obesogenic diets alter metabolism in mice
title_full_unstemmed Obesogenic diets alter metabolism in mice
title_short Obesogenic diets alter metabolism in mice
title_sort obesogenic diets alter metabolism in mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764261/
https://www.ncbi.nlm.nih.gov/pubmed/29324762
http://dx.doi.org/10.1371/journal.pone.0190632
work_keys_str_mv AT showaltermeganr obesogenicdietsaltermetabolisminmice
AT nonneckeericb obesogenicdietsaltermetabolisminmice
AT linderholmal obesogenicdietsaltermetabolisminmice
AT cajkatomas obesogenicdietsaltermetabolisminmice
AT samichaelr obesogenicdietsaltermetabolisminmice
AT lonnerdalbo obesogenicdietsaltermetabolisminmice
AT kenyonnicholasj obesogenicdietsaltermetabolisminmice
AT fiehnoliver obesogenicdietsaltermetabolisminmice