Cargando…

Assessing the links among environmental contaminants, endocrinology, and parasites to understand amphibian declines in montane regions of Costa Rica

Amphibians inhabiting montane riparian zones in the Neotropics are particularly vulnerable to decline, but the reasons are poorly understood. Because environmental contaminants, endocrine disruption, and pathogens often figure prominently in amphibian declines it is imperative that we understand how...

Descripción completa

Detalles Bibliográficos
Autores principales: Leary, Christopher J., Ralicki, Hannah F., Laurencio, David, Crocker-Buta, Sarah, Malone, John H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764372/
https://www.ncbi.nlm.nih.gov/pubmed/29324824
http://dx.doi.org/10.1371/journal.pone.0191183
Descripción
Sumario:Amphibians inhabiting montane riparian zones in the Neotropics are particularly vulnerable to decline, but the reasons are poorly understood. Because environmental contaminants, endocrine disruption, and pathogens often figure prominently in amphibian declines it is imperative that we understand how these factors are potentially interrelated to affect montane populations. One possibility is that increased precipitation associated with global warming promotes the deposition of contaminants in montane regions. Increased exposure to contaminants, in turn, potentially elicits chronic elevations in circulating stress hormones that could contribute to montane population declines by compromising resistance to pathogens and/or production of sex steroids regulating reproduction. Here, we test this hypothesis by examining contaminant levels, stress and sex steroid levels, and nematode abundances in male drab treefrogs, Smilisca sordida, from lowland and montane populations in Costa Rica. We found no evidence that montane populations were more likely to possess contaminants (i.e., organochlorine, organophosphate and carbamate pesticides or benzidine and chlorophenoxy herbicides) than lowland populations. We also found no evidence of elevational differences in circulating levels of the stress hormone corticosterone, estradiol or progesterone. However, montane populations possessed lower androgen levels, hosted more nematode species, and had higher nematode abundances than lowland populations. Although these results suggested that nematodes contributed to lower androgens in montane populations, we were unable to detect a significant inverse relationship between nematode abundance and androgen level. Our results suggest that montane populations of this species are not at greater risk of exposure to contaminants or chronic stress, but implicate nematodes and compromised sex steroid levels as potential threats to montane populations.