Cargando…
Transfer of autologous mitochondria from adipose tissue-derived stem cells rescues oocyte quality and infertility in aged mice
Elder women suffer from low or loss of fertility because of decreasing oocyte quality as maternal aging. As energy resource, mitochondria play pivotal roles in oocyte development, determining oocyte quality. With advanced maternal age, increased dysfunctions emerge in oocyte mitochondria, which decr...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5764387/ https://www.ncbi.nlm.nih.gov/pubmed/29283885 http://dx.doi.org/10.18632/aging.101332 |
Sumario: | Elder women suffer from low or loss of fertility because of decreasing oocyte quality as maternal aging. As energy resource, mitochondria play pivotal roles in oocyte development, determining oocyte quality. With advanced maternal age, increased dysfunctions emerge in oocyte mitochondria, which decrease oocyte quality and its developmental potential. Mitochondria supplement as a possible strategy for improving egg quality has been in debate due to ethnic problems. Heterogeneity is an intractable problem even transfer of germinal vesicle, spindle, pronuclei or polar body is employed. We proposed that the autologous adipose tissue-derived stem cell (ADSC) mitochondria could improve the fertility in aged mice. We found that autologous ADSC mitochondria could promote oocyte quality, embryo development and fertility in aged mice, which may provide a promising strategy for treatment of low fertility or infertility in elder women. |
---|