Cargando…

Large-scale transcriptome changes in the process of long-term visual memory formation in the bumblebee, Bombus terrestris

Many genes have been implicated in mechanisms of long-term memory formation, but there is still much to be learnt about how the genome dynamically responds, transcriptionally, during memory formation. In this study, we used high-throughput sequencing to examine how transcriptome profiles change duri...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Li, Su, Songkun, Perry, Clint J., Elphick, Maurice R., Chittka, Lars, Søvik, Eirik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5765018/
https://www.ncbi.nlm.nih.gov/pubmed/29323174
http://dx.doi.org/10.1038/s41598-017-18836-3
Descripción
Sumario:Many genes have been implicated in mechanisms of long-term memory formation, but there is still much to be learnt about how the genome dynamically responds, transcriptionally, during memory formation. In this study, we used high-throughput sequencing to examine how transcriptome profiles change during visual memory formation in the bumblebee (Bombus terrestris). Expression of fifty-five genes changed immediately after bees were trained to associate reward with a single coloured chip, and the upregulated genes were predominantly genes known to be involved in signal transduction. Changes in the expression of eighty-one genes were observed four hours after learning a new colour, and the majority of these were upregulated and related to transcription and translation, which suggests that the building of new proteins may be the predominant activity four hours after training. Several of the genes identified in this study (e.g. Rab10, Shank1 and Arhgap44) are interesting candidates for further investigation of the molecular mechanisms of long-term memory formation. Our data demonstrate the dynamic gene expression changes after associative colour learning and identify genes involved in each transcriptional wave, which will be useful for future studies of gene regulation in learning and long-term memory formation.