Cargando…

Cooperative standing-horizontal-standing reentrant transition for numerous solid particles under external vibration

We report the collective behavior of numerous plastic bolt-like particles exhibiting one of two distinct states, either standing stationary or horizontal accompanied by tumbling motion, when placed on a horizontal plate undergoing sinusoidal vertical vibration. Experimentally, we prepared an initial...

Descripción completa

Detalles Bibliográficos
Autores principales: Takatori, Satoshi, Baba, Hikari, Ichino, Takatoshi, Shew, Chwen-Yang, Yoshikawa, Kenichi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5765037/
https://www.ncbi.nlm.nih.gov/pubmed/29323262
http://dx.doi.org/10.1038/s41598-017-18728-6
Descripción
Sumario:We report the collective behavior of numerous plastic bolt-like particles exhibiting one of two distinct states, either standing stationary or horizontal accompanied by tumbling motion, when placed on a horizontal plate undergoing sinusoidal vertical vibration. Experimentally, we prepared an initial state in which all of the particles were standing except for a single particle that was placed at the center of the plate. Under continuous vertical vibration, the initially horizontal particle triggers neighboring particles to fall over into a horizontal state through tumbling-induced collision, and this effect gradually spreads to all of the particles, i.e., the number of horizontal particles is increased. Interestingly, within a certain range of vibration intensity, almost all of the horizontal particles revert back to standing in association with the formation of apparent 2D hexagonal dense-packing. Thus, phase segregation between high and low densities, or crystalline and disperse domains, of standing particles is generated as a result of the reentrant transition. The essential features of such cooperative dynamics through the reentrant transition are elucidated with a simple kinetic model. We also demonstrate that an excitable wave with the reentrant transition is observed when particles are situated in a quasi-one-dimensional confinement on a vibrating plate.