Cargando…

Dietary fatty acids sex-specifically modulate guinea pig postnatal development via cortisol concentrations

Early ontogenetic periods and postnatal maturation in organisms are sex-specifically sensitive to hypothalamic-pituitary-adrenal (HPA)-axis activities, related glucocorticoid secretions, and their effects on energy balance and homeostasis. Dietary polyunsaturated (PUFAs) and saturated (SFAs) fatty a...

Descripción completa

Detalles Bibliográficos
Autores principales: Nemeth, Matthias, Millesi, Eva, Schuster, Daniela, Quint, Ruth, Wagner, Karl-Heinz, Wallner, Bernard
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5765112/
https://www.ncbi.nlm.nih.gov/pubmed/29323260
http://dx.doi.org/10.1038/s41598-017-18978-4
Descripción
Sumario:Early ontogenetic periods and postnatal maturation in organisms are sex-specifically sensitive to hypothalamic-pituitary-adrenal (HPA)-axis activities, related glucocorticoid secretions, and their effects on energy balance and homeostasis. Dietary polyunsaturated (PUFAs) and saturated (SFAs) fatty acids potentially play a major role in this context because PUFAs positively affect HPA-axis functions and a shift towards SFAs may impair body homeostasis. Here we show that dietary PUFAs positively affect postnatal body mass gain and diminish negative glucocorticoid-effects on structural growth rates in male guinea pigs. In contrast, SFAs increased glucocorticoid concentrations, which positively affected testes size and testosterone concentrations in males, but limited their body mass gain and first year survival rate. No distinct diet-related effects were detectable on female growth rates. These results highlight the importance of PUFAs in balancing body homeostasis during male’s juvenile development, which clearly derived from a sex-specific energetic advantage of dietary PUFA intakes compared to SFAs.