Cargando…

Global analysis of gene expression profiles in the submandibular salivary gland of klotho knockout mice

Salivary dysfunction commonly occurs in many older adults and is considered a physiological phenomenon. However, the genetic changes in salivary glands during aging have not been characterized. The present study analyzed the gene expression profile in salivary glands from accelerated aging klotho de...

Descripción completa

Detalles Bibliográficos
Autores principales: Kwon, Sung‐Min, Kim, Soo‐A, Yoon, Jung‐Hoon, Yook, Jong‐In, Ahn, Sang‐Gun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5765504/
https://www.ncbi.nlm.nih.gov/pubmed/28885690
http://dx.doi.org/10.1002/jcp.26172
Descripción
Sumario:Salivary dysfunction commonly occurs in many older adults and is considered a physiological phenomenon. However, the genetic changes in salivary glands during aging have not been characterized. The present study analyzed the gene expression profile in salivary glands from accelerated aging klotho deficient mice (klotho−/−, 4 weeks old). Microarray analysis showed that 195 genes were differentially expressed (z‐score > 2 in two independent arrays) in klotho null mice compared to wild‐type mice. Importantly, alpha2‐Na(+)/K(+)‐ATPase (Atp1a2), Ca(2+)‐ATPase (Atp2a1), epidermal growth factor (EGF), and nerve growth factor (NGF), which have been suggested to be regulators of submandibular salivary gland function, were significantly decreased. When a network was constructed from the differentially expressed genes, proliferator‐activated receptor‐γ (PPAR γ), which regulates energy homeostasis and insulin sensitivity, was located at the core of the network. In addition, the expression of genes proposed to regulate various PPAR γ‐related cellular pathways, such as Klk1b26, Egfbp2, Cox8b, Gpx3, Fabp3, EGF, and NGFβ, was altered in the submandibular salivary glands of klotho−/− mice. Our results may provide clues for the identification of novel genes involved in salivary gland dysfunction. Further characterization of these differentially expressed genes will be useful in elucidating the genetic basis of aging‐related changes in the submandibular salivary gland.