Cargando…

How Strong Is the Hydrogen Bond in Hybrid Perovskites?

[Image: see text] Hybrid organic–inorganic perovskites represent a special class of metal–organic framework where a molecular cation is encased in an anionic cage. The molecule–cage interaction influences phase stability, phase transformations, and the molecular dynamics. We examine the hydrogen bon...

Descripción completa

Detalles Bibliográficos
Autores principales: Svane, Katrine L., Forse, Alexander C., Grey, Clare P., Kieslich, Gregor, Cheetham, Anthony K., Walsh, Aron, Butler, Keith T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5765532/
https://www.ncbi.nlm.nih.gov/pubmed/29216715
http://dx.doi.org/10.1021/acs.jpclett.7b03106
Descripción
Sumario:[Image: see text] Hybrid organic–inorganic perovskites represent a special class of metal–organic framework where a molecular cation is encased in an anionic cage. The molecule–cage interaction influences phase stability, phase transformations, and the molecular dynamics. We examine the hydrogen bonding in four AmBX(3) formate perovskites: [Am]Zn(HCOO)(3), with Am(+) = hydrazinium (NH(2)NH(3)(+)), guanidinium (C(NH(2))(3)(+)), dimethylammonium (CH(3))(2)NH(2)(+), and azetidinium (CH(2))(3)NH(2)(+). We develop a scheme to quantify the strength of hydrogen bonding in these systems from first-principles, which separates the electrostatic interactions between the amine (Am(+)) and the BX(3)(–) cage. The hydrogen-bonding strengths of formate perovskites range from 0.36 to 1.40 eV/cation (8–32 kcalmol(–1)). Complementary solid-state nuclear magnetic resonance spectroscopy confirms that strong hydrogen bonding hinders cation mobility. Application of the procedure to hybrid lead halide perovskites (X = Cl, Br, I, Am(+) = CH(3)NH(3)(+), CH(NH(2))(2)(+)) shows that these compounds have significantly weaker hydrogen-bonding energies of 0.09 to 0.27 eV/cation (2–6 kcalmol(–1)), correlating with lower order–disorder transition temperatures.