Cargando…

How Strong Is the Hydrogen Bond in Hybrid Perovskites?

[Image: see text] Hybrid organic–inorganic perovskites represent a special class of metal–organic framework where a molecular cation is encased in an anionic cage. The molecule–cage interaction influences phase stability, phase transformations, and the molecular dynamics. We examine the hydrogen bon...

Descripción completa

Detalles Bibliográficos
Autores principales: Svane, Katrine L., Forse, Alexander C., Grey, Clare P., Kieslich, Gregor, Cheetham, Anthony K., Walsh, Aron, Butler, Keith T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2017
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5765532/
https://www.ncbi.nlm.nih.gov/pubmed/29216715
http://dx.doi.org/10.1021/acs.jpclett.7b03106
_version_ 1783292250952826880
author Svane, Katrine L.
Forse, Alexander C.
Grey, Clare P.
Kieslich, Gregor
Cheetham, Anthony K.
Walsh, Aron
Butler, Keith T.
author_facet Svane, Katrine L.
Forse, Alexander C.
Grey, Clare P.
Kieslich, Gregor
Cheetham, Anthony K.
Walsh, Aron
Butler, Keith T.
author_sort Svane, Katrine L.
collection PubMed
description [Image: see text] Hybrid organic–inorganic perovskites represent a special class of metal–organic framework where a molecular cation is encased in an anionic cage. The molecule–cage interaction influences phase stability, phase transformations, and the molecular dynamics. We examine the hydrogen bonding in four AmBX(3) formate perovskites: [Am]Zn(HCOO)(3), with Am(+) = hydrazinium (NH(2)NH(3)(+)), guanidinium (C(NH(2))(3)(+)), dimethylammonium (CH(3))(2)NH(2)(+), and azetidinium (CH(2))(3)NH(2)(+). We develop a scheme to quantify the strength of hydrogen bonding in these systems from first-principles, which separates the electrostatic interactions between the amine (Am(+)) and the BX(3)(–) cage. The hydrogen-bonding strengths of formate perovskites range from 0.36 to 1.40 eV/cation (8–32 kcalmol(–1)). Complementary solid-state nuclear magnetic resonance spectroscopy confirms that strong hydrogen bonding hinders cation mobility. Application of the procedure to hybrid lead halide perovskites (X = Cl, Br, I, Am(+) = CH(3)NH(3)(+), CH(NH(2))(2)(+)) shows that these compounds have significantly weaker hydrogen-bonding energies of 0.09 to 0.27 eV/cation (2–6 kcalmol(–1)), correlating with lower order–disorder transition temperatures.
format Online
Article
Text
id pubmed-5765532
institution National Center for Biotechnology Information
language English
publishDate 2017
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-57655322018-01-14 How Strong Is the Hydrogen Bond in Hybrid Perovskites? Svane, Katrine L. Forse, Alexander C. Grey, Clare P. Kieslich, Gregor Cheetham, Anthony K. Walsh, Aron Butler, Keith T. J Phys Chem Lett [Image: see text] Hybrid organic–inorganic perovskites represent a special class of metal–organic framework where a molecular cation is encased in an anionic cage. The molecule–cage interaction influences phase stability, phase transformations, and the molecular dynamics. We examine the hydrogen bonding in four AmBX(3) formate perovskites: [Am]Zn(HCOO)(3), with Am(+) = hydrazinium (NH(2)NH(3)(+)), guanidinium (C(NH(2))(3)(+)), dimethylammonium (CH(3))(2)NH(2)(+), and azetidinium (CH(2))(3)NH(2)(+). We develop a scheme to quantify the strength of hydrogen bonding in these systems from first-principles, which separates the electrostatic interactions between the amine (Am(+)) and the BX(3)(–) cage. The hydrogen-bonding strengths of formate perovskites range from 0.36 to 1.40 eV/cation (8–32 kcalmol(–1)). Complementary solid-state nuclear magnetic resonance spectroscopy confirms that strong hydrogen bonding hinders cation mobility. Application of the procedure to hybrid lead halide perovskites (X = Cl, Br, I, Am(+) = CH(3)NH(3)(+), CH(NH(2))(2)(+)) shows that these compounds have significantly weaker hydrogen-bonding energies of 0.09 to 0.27 eV/cation (2–6 kcalmol(–1)), correlating with lower order–disorder transition temperatures. American Chemical Society 2017-12-08 2017-12-21 /pmc/articles/PMC5765532/ /pubmed/29216715 http://dx.doi.org/10.1021/acs.jpclett.7b03106 Text en Copyright © 2017 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited.
spellingShingle Svane, Katrine L.
Forse, Alexander C.
Grey, Clare P.
Kieslich, Gregor
Cheetham, Anthony K.
Walsh, Aron
Butler, Keith T.
How Strong Is the Hydrogen Bond in Hybrid Perovskites?
title How Strong Is the Hydrogen Bond in Hybrid Perovskites?
title_full How Strong Is the Hydrogen Bond in Hybrid Perovskites?
title_fullStr How Strong Is the Hydrogen Bond in Hybrid Perovskites?
title_full_unstemmed How Strong Is the Hydrogen Bond in Hybrid Perovskites?
title_short How Strong Is the Hydrogen Bond in Hybrid Perovskites?
title_sort how strong is the hydrogen bond in hybrid perovskites?
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5765532/
https://www.ncbi.nlm.nih.gov/pubmed/29216715
http://dx.doi.org/10.1021/acs.jpclett.7b03106
work_keys_str_mv AT svanekatrinel howstrongisthehydrogenbondinhybridperovskites
AT forsealexanderc howstrongisthehydrogenbondinhybridperovskites
AT greyclarep howstrongisthehydrogenbondinhybridperovskites
AT kieslichgregor howstrongisthehydrogenbondinhybridperovskites
AT cheethamanthonyk howstrongisthehydrogenbondinhybridperovskites
AT walsharon howstrongisthehydrogenbondinhybridperovskites
AT butlerkeitht howstrongisthehydrogenbondinhybridperovskites