Cargando…

Unusual multiscale mechanics of biomimetic nanoparticle hydrogels

Viscoelastic properties are central for gels and other materials. Simultaneously, high storage and loss moduli are difficult to attain due to their contrarian requirements to chemical structure. Biomimetic inorganic nanoparticles offer a promising toolbox for multiscale engineering of gel mechanics,...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Yunlong, Damasceno, Pablo F., Somashekar, Bagganahalli S., Engel, Michael, Tian, Falin, Zhu, Jian, Huang, Rui, Johnson, Kyle, McIntyre, Carl, Sun, Kai, Yang, Ming, Green, Peter F., Ramamoorthy, Ayyalusamy, Glotzer, Sharon C., Kotov, Nicholas A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766503/
https://www.ncbi.nlm.nih.gov/pubmed/29330415
http://dx.doi.org/10.1038/s41467-017-02579-w
_version_ 1783292363119001600
author Zhou, Yunlong
Damasceno, Pablo F.
Somashekar, Bagganahalli S.
Engel, Michael
Tian, Falin
Zhu, Jian
Huang, Rui
Johnson, Kyle
McIntyre, Carl
Sun, Kai
Yang, Ming
Green, Peter F.
Ramamoorthy, Ayyalusamy
Glotzer, Sharon C.
Kotov, Nicholas A.
author_facet Zhou, Yunlong
Damasceno, Pablo F.
Somashekar, Bagganahalli S.
Engel, Michael
Tian, Falin
Zhu, Jian
Huang, Rui
Johnson, Kyle
McIntyre, Carl
Sun, Kai
Yang, Ming
Green, Peter F.
Ramamoorthy, Ayyalusamy
Glotzer, Sharon C.
Kotov, Nicholas A.
author_sort Zhou, Yunlong
collection PubMed
description Viscoelastic properties are central for gels and other materials. Simultaneously, high storage and loss moduli are difficult to attain due to their contrarian requirements to chemical structure. Biomimetic inorganic nanoparticles offer a promising toolbox for multiscale engineering of gel mechanics, but a conceptual framework for their molecular, nanoscale, mesoscale, and microscale engineering as viscoelastic materials is absent. Here we show nanoparticle gels with simultaneously high storage and loss moduli from CdTe nanoparticles. Viscoelastic figure of merit reaches 1.83 MPa exceeding that of comparable gels by 100–1000 times for glutathione-stabilized nanoparticles. The gels made from the smallest nanoparticles display the highest stiffness, which was attributed to the drastic change of GSH configurations when nanoparticles decrease in size. A computational model accounting for the difference in nanoparticle interactions for variable GSH configurations describes the unusual trends of nanoparticle gel viscoelasticity. These observations are generalizable to other NP gels interconnected by supramolecular interactions and lead to materials with high-load bearing abilities and energy dissipation needed for multiple technologies.
format Online
Article
Text
id pubmed-5766503
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-57665032018-01-18 Unusual multiscale mechanics of biomimetic nanoparticle hydrogels Zhou, Yunlong Damasceno, Pablo F. Somashekar, Bagganahalli S. Engel, Michael Tian, Falin Zhu, Jian Huang, Rui Johnson, Kyle McIntyre, Carl Sun, Kai Yang, Ming Green, Peter F. Ramamoorthy, Ayyalusamy Glotzer, Sharon C. Kotov, Nicholas A. Nat Commun Article Viscoelastic properties are central for gels and other materials. Simultaneously, high storage and loss moduli are difficult to attain due to their contrarian requirements to chemical structure. Biomimetic inorganic nanoparticles offer a promising toolbox for multiscale engineering of gel mechanics, but a conceptual framework for their molecular, nanoscale, mesoscale, and microscale engineering as viscoelastic materials is absent. Here we show nanoparticle gels with simultaneously high storage and loss moduli from CdTe nanoparticles. Viscoelastic figure of merit reaches 1.83 MPa exceeding that of comparable gels by 100–1000 times for glutathione-stabilized nanoparticles. The gels made from the smallest nanoparticles display the highest stiffness, which was attributed to the drastic change of GSH configurations when nanoparticles decrease in size. A computational model accounting for the difference in nanoparticle interactions for variable GSH configurations describes the unusual trends of nanoparticle gel viscoelasticity. These observations are generalizable to other NP gels interconnected by supramolecular interactions and lead to materials with high-load bearing abilities and energy dissipation needed for multiple technologies. Nature Publishing Group UK 2018-01-12 /pmc/articles/PMC5766503/ /pubmed/29330415 http://dx.doi.org/10.1038/s41467-017-02579-w Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Zhou, Yunlong
Damasceno, Pablo F.
Somashekar, Bagganahalli S.
Engel, Michael
Tian, Falin
Zhu, Jian
Huang, Rui
Johnson, Kyle
McIntyre, Carl
Sun, Kai
Yang, Ming
Green, Peter F.
Ramamoorthy, Ayyalusamy
Glotzer, Sharon C.
Kotov, Nicholas A.
Unusual multiscale mechanics of biomimetic nanoparticle hydrogels
title Unusual multiscale mechanics of biomimetic nanoparticle hydrogels
title_full Unusual multiscale mechanics of biomimetic nanoparticle hydrogels
title_fullStr Unusual multiscale mechanics of biomimetic nanoparticle hydrogels
title_full_unstemmed Unusual multiscale mechanics of biomimetic nanoparticle hydrogels
title_short Unusual multiscale mechanics of biomimetic nanoparticle hydrogels
title_sort unusual multiscale mechanics of biomimetic nanoparticle hydrogels
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766503/
https://www.ncbi.nlm.nih.gov/pubmed/29330415
http://dx.doi.org/10.1038/s41467-017-02579-w
work_keys_str_mv AT zhouyunlong unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT damascenopablof unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT somashekarbagganahallis unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT engelmichael unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT tianfalin unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT zhujian unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT huangrui unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT johnsonkyle unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT mcintyrecarl unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT sunkai unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT yangming unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT greenpeterf unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT ramamoorthyayyalusamy unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT glotzersharonc unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels
AT kotovnicholasa unusualmultiscalemechanicsofbiomimeticnanoparticlehydrogels