Cargando…
Missing Value Imputation Approach for Mass Spectrometry-based Metabolomics Data
Missing values exist widely in mass-spectrometry (MS) based metabolomics data. Various methods have been applied for handling missing values, but the selection can significantly affect following data analyses. Typically, there are three types of missing values, missing not at random (MNAR), missing...
Autores principales: | Wei, Runmin, Wang, Jingye, Su, Mingming, Jia, Erik, Chen, Shaoqiu, Chen, Tianlu, Ni, Yan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766532/ https://www.ncbi.nlm.nih.gov/pubmed/29330539 http://dx.doi.org/10.1038/s41598-017-19120-0 |
Ejemplares similares
-
GSimp: A Gibbs sampler based left-censored missing value imputation approach for metabolomics studies
por: Wei, Runmin, et al.
Publicado: (2018) -
NMF-Based Approach for Missing Values Imputation of Mass Spectrometry Metabolomics Data
por: Xu, Jingjing, et al.
Publicado: (2021) -
Kernel weighted least square approach for imputing missing values of metabolomics data
por: Kumar, Nishith, et al.
Publicado: (2021) -
A Workflow for Missing Values Imputation of Untargeted Metabolomics Data
por: Faquih, Tariq, et al.
Publicado: (2020) -
Multi-View Variational Autoencoder for Missing Value Imputation in Untargeted Metabolomics
por: Zhao, Chen, et al.
Publicado: (2023)