Cargando…

Shaping and Controlled Fragmentation of Liquid Metal Droplets through Cavitation

Targeting micrometer sized metal droplets with near-infrared sub-picosecond laser pulses generates intense stress-confined acoustic waves within the droplet. Spherical focusing amplifies their pressures. The rarefaction wave nucleates cavitation at the center of the droplet, which explosively expand...

Descripción completa

Detalles Bibliográficos
Autores principales: Krivokorytov, M. S., Zeng, Q., Lakatosh, B. V., Vinokhodov, A. Yu., Sidelnikov, Yu. V., Kompanets, V. O., Krivtsun, V. M., Koshelev, K. N., Ohl, C. D., Medvedev, V. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766571/
https://www.ncbi.nlm.nih.gov/pubmed/29330510
http://dx.doi.org/10.1038/s41598-017-19140-w
Descripción
Sumario:Targeting micrometer sized metal droplets with near-infrared sub-picosecond laser pulses generates intense stress-confined acoustic waves within the droplet. Spherical focusing amplifies their pressures. The rarefaction wave nucleates cavitation at the center of the droplet, which explosively expands with a repeatable fragmentation scenario resulting into high-speed jetting. We predict the number of jets as a function of the laser energy by coupling the cavitation bubble dynamics with Rayleigh-Taylor instabilities. This provides a path to control cavitation and droplet shaping of liquid metals in particular for their use as targets in extreme-UV light sources.