Cargando…
Turning a normal microscope into a super-resolution instrument using a scanning microlens array
We report dielectric microsphere array-based optical super-resolution microscopy. A dielectric microsphere that is placed on a sample is known to generate a virtual image with resolution better than the optical diffraction limit. However, a limitation of such type of super-resolution microscopy is t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766610/ https://www.ncbi.nlm.nih.gov/pubmed/29330492 http://dx.doi.org/10.1038/s41598-017-19039-6 |
Sumario: | We report dielectric microsphere array-based optical super-resolution microscopy. A dielectric microsphere that is placed on a sample is known to generate a virtual image with resolution better than the optical diffraction limit. However, a limitation of such type of super-resolution microscopy is the restricted field-of-view, essentially limited to the central area of the microsphere-generated image. We overcame this limitation by scanning a micro-fabricated array of ordered microspheres over the sample using a customized algorithm that moved step-by-step a motorized stage, meanwhile the microscope-mounted camera was taking pictures at every step. Finally, we stitched together the extracted central parts of the virtual images that showed super-resolution into a mosaic image. We demonstrated 130 nm lateral resolution (~λ/4) and 5 × 10(5) µm(2) scanned surface area using a two by one array of barium titanate glass microspheres in oil-immersion environment. Our findings may serve as a basis for widespread applications of affordable optical super-resolution microscopy. |
---|