Cargando…
Application of Weighted Gene Co-expression Network Analysis for Data from Paired Design
Investigating how genes jointly affect complex human diseases is important, yet challenging. The network approach (e.g., weighted gene co-expression network analysis (WGCNA)) is a powerful tool. However, genomic data usually contain substantial batch effects, which could mask true genomic signals. P...
Autores principales: | Li, Jianqiang, Zhou, Doudou, Qiu, Weiliang, Shi, Yuliang, Yang, Ji-Jiang, Chen, Shi, Wang, Qing, Pan, Hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766625/ https://www.ncbi.nlm.nih.gov/pubmed/29330528 http://dx.doi.org/10.1038/s41598-017-18705-z |
Ejemplares similares
-
Weighted Gene Co-expression Network Analysis for RNA-Sequencing Data of the Varicose Veins Transcriptome
por: Zhang, Jianbin, et al.
Publicado: (2019) -
A model-based clustering via mixture of hierarchical models with covariate adjustment for detecting differentially expressed genes from paired design
por: Zhang, Yixin, et al.
Publicado: (2023) -
An Investigation about Gene Modules Associated with hDPSC Differentiation for Adolescents
por: Xu, Wenjing, et al.
Publicado: (2019) -
Predicting Co-Complexed Protein Pairs from Heterogeneous Data
por: Qiu, Jian, et al.
Publicado: (2008) -
Detecting disease-associated genomic outcomes using constrained mixture of Bayesian hierarchical models for paired data
por: Li, Yunfeng, et al.
Publicado: (2017)