Cargando…

ICP curve morphology and intracranial flow-volume changes: a simultaneous ICP and cine phase contrast MRI study in humans

BACKGROUND: The intracranial pressure (ICP) curve with its different peaks has been extensively studied, but the exact physiological mechanisms behind its morphology are still not fully understood. Both intracranial volume change (ΔICV) and transmission of the arterial blood pressure have been propo...

Descripción completa

Detalles Bibliográficos
Autores principales: Unnerbäck, Mårten, Ottesen, Johnny T., Reinstrup, Peter
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Vienna 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5766711/
https://www.ncbi.nlm.nih.gov/pubmed/29273948
http://dx.doi.org/10.1007/s00701-017-3435-2
Descripción
Sumario:BACKGROUND: The intracranial pressure (ICP) curve with its different peaks has been extensively studied, but the exact physiological mechanisms behind its morphology are still not fully understood. Both intracranial volume change (ΔICV) and transmission of the arterial blood pressure have been proposed to shape the ICP curve. This study tested the hypothesis that the ICP curve correlates to intracranial volume changes. METHODS: Cine phase contrast magnetic resonance imaging (MRI) examinations were performed in neuro-intensive care patients with simultaneous ICP monitoring. The MRI was set to examine cerebral arterial inflow and venous cerebral outflow as well as flow of cerebrospinal fluid over the foramen magnum. The difference in total flow into and out from the cranial cavity (Flow(tot)) over time provides the ΔICV. The ICP curve was compared to the Flow(tot) and the ΔICV. Correlations were calculated through linear and logarithmic regression. Student’s t test was used to test the null hypothesis between paired samples. RESULTS: Excluding the initial ICP wave, P1, the mean R (2) for the correlation between the ΔICV and the ICP was 0.75 for the exponential expression, which had a higher correlation than the linear (p = 0.005). The first ICP peaks correlated to the initial peaks of Flow(tot) with a mean R (2) = 0.88. CONCLUSION: The first part, or the P1, of the ICP curve seems to be created by the first rapid net inflow seen in Flow(tot) while the rest of the ICP curve seem to correlate to the ΔICV.