Cargando…

Innexin Expression in Electrically Coupled Motor Circuits

The many roles of innexins, the molecules that form gap junctions in invertebrates, have been explored in numerous species. Here, we present a summary of innexin expression and function in two small, central pattern generating circuits found in crustaceans: the stomatogastric ganglion and the cardia...

Descripción completa

Detalles Bibliográficos
Autores principales: Otopalik, Adriane G., Lane, Brian, Schulz, David J., Marder, Eve
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767152/
https://www.ncbi.nlm.nih.gov/pubmed/28711343
http://dx.doi.org/10.1016/j.neulet.2017.07.016
Descripción
Sumario:The many roles of innexins, the molecules that form gap junctions in invertebrates, have been explored in numerous species. Here, we present a summary of innexin expression and function in two small, central pattern generating circuits found in crustaceans: the stomatogastric ganglion and the cardiac ganglion. The two ganglia express multiple innexin genes, exhibit varying combinations of symmetrical and rectifying gap junctions, as well as gap junctions within and across different cell types. Past studies have revealed correlations in ion channel and innexin expression in coupled neurons, as well as intriguing functional relationships between ion channel conductances and electrical coupling. Together, these studies suggest a putative role for innexins in correlating activity between coupled neurons at the levels of gene expression and physiological activity during development and in the adult animal.