Cargando…
Catalytic Dibenzocyclooctene Synthesis via Cobalt(III)–Carbene Radical and ortho‐Quinodimethane Intermediates
The metalloradical activation of ortho‐benzallylaryl N‐tosyl hydrazones with [Co(TPP)] (TPP=tetraphenylporphyrin) as the catalyst enabled the controlled exploitation of the single‐electron reactivity of the redox non‐innocent carbene intermediate. This method offers a novel route to prepare eight‐me...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767734/ https://www.ncbi.nlm.nih.gov/pubmed/29155465 http://dx.doi.org/10.1002/anie.201711028 |
Sumario: | The metalloradical activation of ortho‐benzallylaryl N‐tosyl hydrazones with [Co(TPP)] (TPP=tetraphenylporphyrin) as the catalyst enabled the controlled exploitation of the single‐electron reactivity of the redox non‐innocent carbene intermediate. This method offers a novel route to prepare eight‐membered rings, using base metal catalysis to construct a series of unique dibenzocyclooctenes through selective C(carbene)−C(aryl) cyclization. The desired eight‐membered‐ring products were obtained in good to excellent yields. A large variety of aromatic substituents are tolerated. The proposed reaction mechanism involves intramolecular hydrogen atom transfer (HAT) to Co(III)–carbene radical intermediates followed by dissociation of an ortho‐quinodimethane that undergoes 8π cyclization. The mechanism is supported by DFT calculations, and the presence of radical‐type intermediates was confirmed by trapping experiments. |
---|