Cargando…
IDH1R132H Promotes Malignant Transformation of Benign Prostatic Epithelium by Dysregulating MicroRNAs: Involvement of IGF1R-AKT/STAT3 Signaling Pathway
Risk stratification using molecular features could potentially help distinguish indolent from aggressive prostate cancer (PCa). Mutations in isocitrate dehydrogenase (IDH) acquire an abnormal enzymatic activity, resulting in the production of 2-hydroxyglutarate and alterations in cellular metabolism...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767912/ https://www.ncbi.nlm.nih.gov/pubmed/29331887 http://dx.doi.org/10.1016/j.neo.2017.12.001 |
_version_ | 1783292613703499776 |
---|---|
author | Zhang, Lili Qi, Mei Feng, Tingting Hu, Jing Wang, Lin Li, Xinjun Gao, Wei Liu, Hui Jiao, Meng Wu, Zhen Bai, Xinnuo Bie, Yifan Liu, Long Han, Bo |
author_facet | Zhang, Lili Qi, Mei Feng, Tingting Hu, Jing Wang, Lin Li, Xinjun Gao, Wei Liu, Hui Jiao, Meng Wu, Zhen Bai, Xinnuo Bie, Yifan Liu, Long Han, Bo |
author_sort | Zhang, Lili |
collection | PubMed |
description | Risk stratification using molecular features could potentially help distinguish indolent from aggressive prostate cancer (PCa). Mutations in isocitrate dehydrogenase (IDH) acquire an abnormal enzymatic activity, resulting in the production of 2-hydroxyglutarate and alterations in cellular metabolism, histone modification, and DNA methylation. Mutant IDH1 has been identified in various human malignancies, and IDH1R132H constituted the vast majority of mutational events of IDH1. Most recent studies suggested that IDH1 mutations define a methylator subtype in PCa. However, the function of IDH1R132H in PCa development and progression is largely unknown. In this study, we showed that the prevalence of IDH1R132H in Chinese PCa patients is 0.6% (2/336). Of note, IDH1R132H-mutant PCa patients lacked other canonical genomic lesions (e.g., ERG rearrangement, PTEN deletion) that are common in most other PCa patients. The in vitro experiment suggested that IDH1R132H can promote proliferation of benign prostate epithelial cell RWPE-1 when under the situation of low cytokine. It could also promote migration capacity of RWPE-1 cells. Mechanistically, IDH1R132H was an important regulator of insulin-like growth factor 1receptor (IGF1R) by downregulating a set of microRNAs (miR-141-3p, miR-7-5p, miR-223-3p). These microRNAs were repressed by the alteration of epigenetic modification to decrease the enrichment of active marker H3K4me3 or to increase repressive marker H3K27me3 at their promoters. Collectively, we proposed a novel model for an IDH1R132H-microRNAs-IGF1R regulatory axis, which might provide insight into the function of IDH1R132H in PCa development. |
format | Online Article Text |
id | pubmed-5767912 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Neoplasia Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-57679122018-01-18 IDH1R132H Promotes Malignant Transformation of Benign Prostatic Epithelium by Dysregulating MicroRNAs: Involvement of IGF1R-AKT/STAT3 Signaling Pathway Zhang, Lili Qi, Mei Feng, Tingting Hu, Jing Wang, Lin Li, Xinjun Gao, Wei Liu, Hui Jiao, Meng Wu, Zhen Bai, Xinnuo Bie, Yifan Liu, Long Han, Bo Neoplasia Original article Risk stratification using molecular features could potentially help distinguish indolent from aggressive prostate cancer (PCa). Mutations in isocitrate dehydrogenase (IDH) acquire an abnormal enzymatic activity, resulting in the production of 2-hydroxyglutarate and alterations in cellular metabolism, histone modification, and DNA methylation. Mutant IDH1 has been identified in various human malignancies, and IDH1R132H constituted the vast majority of mutational events of IDH1. Most recent studies suggested that IDH1 mutations define a methylator subtype in PCa. However, the function of IDH1R132H in PCa development and progression is largely unknown. In this study, we showed that the prevalence of IDH1R132H in Chinese PCa patients is 0.6% (2/336). Of note, IDH1R132H-mutant PCa patients lacked other canonical genomic lesions (e.g., ERG rearrangement, PTEN deletion) that are common in most other PCa patients. The in vitro experiment suggested that IDH1R132H can promote proliferation of benign prostate epithelial cell RWPE-1 when under the situation of low cytokine. It could also promote migration capacity of RWPE-1 cells. Mechanistically, IDH1R132H was an important regulator of insulin-like growth factor 1receptor (IGF1R) by downregulating a set of microRNAs (miR-141-3p, miR-7-5p, miR-223-3p). These microRNAs were repressed by the alteration of epigenetic modification to decrease the enrichment of active marker H3K4me3 or to increase repressive marker H3K27me3 at their promoters. Collectively, we proposed a novel model for an IDH1R132H-microRNAs-IGF1R regulatory axis, which might provide insight into the function of IDH1R132H in PCa development. Neoplasia Press 2018-01-12 /pmc/articles/PMC5767912/ /pubmed/29331887 http://dx.doi.org/10.1016/j.neo.2017.12.001 Text en © 2018 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Original article Zhang, Lili Qi, Mei Feng, Tingting Hu, Jing Wang, Lin Li, Xinjun Gao, Wei Liu, Hui Jiao, Meng Wu, Zhen Bai, Xinnuo Bie, Yifan Liu, Long Han, Bo IDH1R132H Promotes Malignant Transformation of Benign Prostatic Epithelium by Dysregulating MicroRNAs: Involvement of IGF1R-AKT/STAT3 Signaling Pathway |
title | IDH1R132H Promotes Malignant Transformation of Benign Prostatic Epithelium by Dysregulating MicroRNAs: Involvement of IGF1R-AKT/STAT3 Signaling Pathway |
title_full | IDH1R132H Promotes Malignant Transformation of Benign Prostatic Epithelium by Dysregulating MicroRNAs: Involvement of IGF1R-AKT/STAT3 Signaling Pathway |
title_fullStr | IDH1R132H Promotes Malignant Transformation of Benign Prostatic Epithelium by Dysregulating MicroRNAs: Involvement of IGF1R-AKT/STAT3 Signaling Pathway |
title_full_unstemmed | IDH1R132H Promotes Malignant Transformation of Benign Prostatic Epithelium by Dysregulating MicroRNAs: Involvement of IGF1R-AKT/STAT3 Signaling Pathway |
title_short | IDH1R132H Promotes Malignant Transformation of Benign Prostatic Epithelium by Dysregulating MicroRNAs: Involvement of IGF1R-AKT/STAT3 Signaling Pathway |
title_sort | idh1r132h promotes malignant transformation of benign prostatic epithelium by dysregulating micrornas: involvement of igf1r-akt/stat3 signaling pathway |
topic | Original article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767912/ https://www.ncbi.nlm.nih.gov/pubmed/29331887 http://dx.doi.org/10.1016/j.neo.2017.12.001 |
work_keys_str_mv | AT zhanglili idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT qimei idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT fengtingting idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT hujing idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT wanglin idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT lixinjun idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT gaowei idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT liuhui idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT jiaomeng idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT wuzhen idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT baixinnuo idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT bieyifan idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT liulong idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway AT hanbo idh1r132hpromotesmalignanttransformationofbenignprostaticepitheliumbydysregulatingmicrornasinvolvementofigf1raktstat3signalingpathway |