Cargando…
Recent trends in antimicrobial peptide prediction using machine learning techniques
The importance to develop effective alternatives to known antibiotics due to increased microbial resistance is gaining momentum in recent years. Therefore, it is of interest to predict, design and computationally model Antimicrobial Peptides (AMPs). AMPs are oligopeptides with varying size (from 5 t...
Autores principales: | Shah, Yash, Sehgal, Deepak, Valadi, Jayaraman K |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Biomedical Informatics
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767919/ https://www.ncbi.nlm.nih.gov/pubmed/29379261 http://dx.doi.org/10.6026/97320630013415 |
Ejemplares similares
-
Classification of anti hepatitis peptides using Support Vector Machine with hybrid Ant Colony OptimizationThe Luxembourg database of trichothecene type B F. graminearum and F. culmorum producers
por: Mishra, Gunjan, et al.
Publicado: (2016) -
Quantitative Structure Activity Relationship study of the Anti-Hepatitis Peptides employing Random Forests and Extra-trees regressors
por: Mishra, Gunjan, et al.
Publicado: (2017) -
Application of Support Vector Machines in Viral Biology
por: Modak, Sonal, et al.
Publicado: (2019) -
Prediction of antimicrobial peptides toxicity based on their physico-chemical properties using machine learning techniques
por: Khabbaz, Hossein, et al.
Publicado: (2021) -
Recent Progress in the Discovery and Design of Antimicrobial Peptides Using Traditional Machine Learning and Deep Learning
por: Yan, Jielu, et al.
Publicado: (2022)