Cargando…

Characterization of a hypothetical protein YVRE from Bacillus subtilis indicates its key role as glucono-lactonase in pentose phosphate pathway and glucose metabolism

Hypothetical proteins are functionally uncharacterized proteins with assigned function using sequence annotation tools. Almost half of the coding regions of several genomes are hypothetical proteins. Therefore, it is of our interest to characterize a hypothetical protein YVRE from the model system B...

Descripción completa

Detalles Bibliográficos
Autores principales: Reshma, S.V., Sathyanarayanan, Nitish, Nagendra, H.G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Biomedical Informatics 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5767921/
https://www.ncbi.nlm.nih.gov/pubmed/29379263
http://dx.doi.org/10.6026/97320630013430
Descripción
Sumario:Hypothetical proteins are functionally uncharacterized proteins with assigned function using sequence annotation tools. Almost half of the coding regions of several genomes are hypothetical proteins. Therefore, it is of our interest to characterize a hypothetical protein YVRE from the model system Bacillus subtilis using known data. YVRE is assigned the function as a glucono-lactonase using prediction and phylogenetic analysis. A molecular dynamics simulated homology model of YVRE (with calcium) using human senescence marker protein 30 /SMP30 (PDB ID: 3G4E) as template is reported for functional inference. It is observed that the protein possesses bivalent metal binding domain. Molecular docking studies with the substrate glucono-δ-lactone show YVRE binding with the substrate. This data was further validated using cloning and sub-cloning in pUC57 and pET22b+ respectively, followed by expression and purification using nickel affinity chromatography. The activity of YVRE using the substrate glucono-δ-lactone was calculated. The results show the function of YVRE as a gluconolactonase, with higher preference to zinc than calcium or magnesium. Thus, YVRE is shown to play key role in three metabolic pathways namely, pentose phosphate pathway, ascorbate and aldarate metabolism, and caprolactam degradation.