Cargando…
Normalize the response of EPID in pursuit of linear accelerator dosimetry standardization
Normalize the response of electronic portal imaging device (EPID) is the first step toward an EPID‐based standardization of Linear Accelerator (linac) dosimetry quality assurance. In this study, we described an approach to generate two‐dimensional (2D) pixel sensitivity maps (PSM) for EPIDs response...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768011/ https://www.ncbi.nlm.nih.gov/pubmed/29125224 http://dx.doi.org/10.1002/acm2.12222 |
Sumario: | Normalize the response of electronic portal imaging device (EPID) is the first step toward an EPID‐based standardization of Linear Accelerator (linac) dosimetry quality assurance. In this study, we described an approach to generate two‐dimensional (2D) pixel sensitivity maps (PSM) for EPIDs response normalization utilizing an alternative beam and dark‐field (ABDF) image acquisition technique and large overlapping field irradiations. The automated image acquisition was performed by XML‐controlled machine operation and the PSM was generated based on a recursive calculation algorithm for Varian linacs equipped with aS1000 and aS1200 imager panels. Cross‐comparisons of normalized beam profiles and 1.5%/1.5 mm 1D Gamma analysis was adopted to quantify the improvement of beam profile matching before and after PSM corrections. PSMs were derived for both photon (6, 10, 15 MV) and electron (6, 20 MeV) beams via proposed method. The PSM‐corrected images reproduced a horn‐shaped profile for photon beams and a relative uniform profiles for electrons. For dosimetrically matched linacs equipped with aS1000 panels, PSM‐corrected images showed increased 1D‐Gamma passing rates for all energies, with an average 10.5% improvement for crossline and 37% for inline beam profiles. Similar improvements in the phantom study were observed with a maximum improvement of 32% for 15 MV and 22% for 20 MeV. The PSM value showed no significant change for all energies over a 3‐month period. In conclusion, the proposed approach correct EPID response for both aS1000 and aS1200 panels. This strategy enables the possibility to standardize linac dosimetry QA and to benchmark linac performance utilizing EPID as the common detector. |
---|