Cargando…
Localization and function of neurosecretory protein GM, a novel small secretory protein, in the chicken hypothalamus
Recently, we discovered a novel cDNA encoding the precursor of a small secretory protein, neurosecretory protein GL (NPGL), in the hypothalamic infundibulum of chickens. NPGL plays an important role in the regulation of growth and feeding. A database search indicated that the NPGL gene has a paralog...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5768754/ https://www.ncbi.nlm.nih.gov/pubmed/29335496 http://dx.doi.org/10.1038/s41598-017-18822-9 |
Sumario: | Recently, we discovered a novel cDNA encoding the precursor of a small secretory protein, neurosecretory protein GL (NPGL), in the hypothalamic infundibulum of chickens. NPGL plays an important role in the regulation of growth and feeding. A database search indicated that the NPGL gene has a paralogous gene: neurosecretory protein GM (NPGM), also in chickens. We identified cDNA encoding the NPGM precursor in chickens. Morphological analysis showed that NPGM-containing cells are specifically localized in the medial mammillary nucleus (MM) and infundibular nucleus (IN) in the hypothalamus. In addition, we found that NPGM and NPGL are co-localized, especially in the MM. The expression levels of NPGM mRNA gradually decreased during post-hatch development, in contrast to those of NPGL mRNA. Moreover, we investigated the relationship between NPGM and other known factors. NPGM was found to be produced in histaminergic neurons in the MM. NPGM and histidine decarboxylase, a histamine-producing enzyme, displayed similar expression patterns during post-hatch development. Acute intracerebroventricular injection of NPGM decreased food intake, similar to the effect of histamine. To our knowledge, this is the first report of the localization and function of NPGM in the brain of vertebrates. These results will further advance the understanding mechanisms underlying energy homeostasis. |
---|