Cargando…
Machine learning approaches to the social determinants of health in the health and retirement study
BACKGROUND: Social and economic factors are important predictors of health and of recognized importance for health systems. However, machine learning, used elsewhere in the biomedical literature, has not been extensively applied to study relationships between society and health. We investigate how m...
Autores principales: | Seligman, Benjamin, Tuljapurkar, Shripad, Rehkopf, David |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769116/ https://www.ncbi.nlm.nih.gov/pubmed/29349278 http://dx.doi.org/10.1016/j.ssmph.2017.11.008 |
Ejemplares similares
-
Racial and Socioeconomic Variation in Genetic Markers of Telomere Length: A Cross-Sectional Study of U.S. Older Adults
por: Hamad, Rita, et al.
Publicado: (2016) -
Poverty dynamics, poverty thresholds and mortality: An age-stage Markovian model
por: Bernstein, Shayna Fae, et al.
Publicado: (2018) -
Mapping of machine learning approaches for description, prediction, and causal inference in the social and health sciences
por: Leist, Anja K., et al.
Publicado: (2022) -
The big challenges in modeling human and environmental well-being
por: Tuljapurkar, Shripad
Publicado: (2016) -
Population dynamics in variable environments
por: Tuljapurkar, Shripad
Publicado: (1990)