Cargando…

One-Parameter Scaling Theory for DNA Extension in a Nanochannel

Experiments measuring DNA extension in nanochannels are at odds with even the most basic predictions of current scaling arguments for the conformations of confined semiflexible polymers such as DNA. We show that a theory based on a weakly self-avoiding, one-dimensional “telegraph” process collapses...

Descripción completa

Detalles Bibliográficos
Autores principales: Werner, E., Cheong, G. K., Gupta, D., Dorfman, K. D., Mehlig, B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769985/
https://www.ncbi.nlm.nih.gov/pubmed/29328690
http://dx.doi.org/10.1103/PhysRevLett.119.268102
_version_ 1783292998437568512
author Werner, E.
Cheong, G. K.
Gupta, D.
Dorfman, K. D.
Mehlig, B.
author_facet Werner, E.
Cheong, G. K.
Gupta, D.
Dorfman, K. D.
Mehlig, B.
author_sort Werner, E.
collection PubMed
description Experiments measuring DNA extension in nanochannels are at odds with even the most basic predictions of current scaling arguments for the conformations of confined semiflexible polymers such as DNA. We show that a theory based on a weakly self-avoiding, one-dimensional “telegraph” process collapses experimental data and simulation results onto a single master curve throughout the experimentally relevant region of parameter space and explains the mechanisms at play.
format Online
Article
Text
id pubmed-5769985
institution National Center for Biotechnology Information
language English
publishDate 2017
record_format MEDLINE/PubMed
spelling pubmed-57699852018-01-16 One-Parameter Scaling Theory for DNA Extension in a Nanochannel Werner, E. Cheong, G. K. Gupta, D. Dorfman, K. D. Mehlig, B. Phys Rev Lett Article Experiments measuring DNA extension in nanochannels are at odds with even the most basic predictions of current scaling arguments for the conformations of confined semiflexible polymers such as DNA. We show that a theory based on a weakly self-avoiding, one-dimensional “telegraph” process collapses experimental data and simulation results onto a single master curve throughout the experimentally relevant region of parameter space and explains the mechanisms at play. 2017-12-28 2017-12-29 /pmc/articles/PMC5769985/ /pubmed/29328690 http://dx.doi.org/10.1103/PhysRevLett.119.268102 Text en http://creativecommons.org/licenses/by/4.0/ Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.
spellingShingle Article
Werner, E.
Cheong, G. K.
Gupta, D.
Dorfman, K. D.
Mehlig, B.
One-Parameter Scaling Theory for DNA Extension in a Nanochannel
title One-Parameter Scaling Theory for DNA Extension in a Nanochannel
title_full One-Parameter Scaling Theory for DNA Extension in a Nanochannel
title_fullStr One-Parameter Scaling Theory for DNA Extension in a Nanochannel
title_full_unstemmed One-Parameter Scaling Theory for DNA Extension in a Nanochannel
title_short One-Parameter Scaling Theory for DNA Extension in a Nanochannel
title_sort one-parameter scaling theory for dna extension in a nanochannel
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5769985/
https://www.ncbi.nlm.nih.gov/pubmed/29328690
http://dx.doi.org/10.1103/PhysRevLett.119.268102
work_keys_str_mv AT wernere oneparameterscalingtheoryfordnaextensioninananochannel
AT cheonggk oneparameterscalingtheoryfordnaextensioninananochannel
AT guptad oneparameterscalingtheoryfordnaextensioninananochannel
AT dorfmankd oneparameterscalingtheoryfordnaextensioninananochannel
AT mehligb oneparameterscalingtheoryfordnaextensioninananochannel