Cargando…
Identifying drug-pathway association pairs based on L(2,1)-integrative penalized matrix decomposition
BACKGROUND: Traditional drug identification methods follow the “one drug-one target” thought. But those methods ignore the natural characters of human diseases. To overcome this limitation, many identification methods of drug-pathway association pairs have been developed, such as the integrative pen...
Autores principales: | Liu, Jin-Xing, Wang, Dong-Qin, Zheng, Chun-Hou, Gao, Ying-Lian, Wu, Sha-Sha, Shang, Jun-Liang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770056/ https://www.ncbi.nlm.nih.gov/pubmed/29297378 http://dx.doi.org/10.1186/s12918-017-0480-7 |
Ejemplares similares
-
Identifying drug-pathway association pairs based on L1L2,1-integrative penalized matrix decomposition
por: Wang, Dong-Qin, et al.
Publicado: (2017) -
A Class-Information-Based Penalized Matrix Decomposition for Identifying Plants Core Genes Responding to Abiotic Stresses
por: Liu, Jin-Xing, et al.
Publicado: (2014) -
L(2,1)-GRMF: an improved graph regularized matrix factorization method to predict drug-target interactions
por: Cui, Zhen, et al.
Publicado: (2019) -
Detection of Protein Complexes Based on Penalized Matrix Decomposition in a Sparse Protein–Protein Interaction Network
por: Cao, Buwen, et al.
Publicado: (2018) -
A new method for mining information of co-expression network based on multi-cancers integrated data
por: Hou, Mi-Xiao, et al.
Publicado: (2019)