Cargando…
Understanding turbulent free-surface vortex flows using a Taylor-Couette flow analogy
Free-surface vortices have long been studied to develop an understanding of similar rotating flow phenomena observed in nature and technology. However, a complete description of its turbulent three-dimensional flow field still remains elusive. In contrast, the related Taylor-Couette flow system has...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770388/ https://www.ncbi.nlm.nih.gov/pubmed/29339740 http://dx.doi.org/10.1038/s41598-017-16950-w |
Sumario: | Free-surface vortices have long been studied to develop an understanding of similar rotating flow phenomena observed in nature and technology. However, a complete description of its turbulent three-dimensional flow field still remains elusive. In contrast, the related Taylor-Couette flow system has been well explicated which classically exhibits successive instability phases manifested in so-called Taylor vortices. In this study, observations made on the turbulent free-surface vortex revealed distinguishable, time-dependent “Taylor-like” vortices in the secondary flow field similar to the Taylor-Couette flow system. The observations were enabled by an original application of 2D ultrasonic Doppler velocity profiling complemented with laser induced fluorescence dye observations. Additional confirmation was provided by three-dimensional numerical simulations. Using Rayleigh’s stability criterion, we analytically show that a wall bounded free-surface vortex can indeed become unstable due to a centrifugal driving force in a similar manner to the Taylor-Couette flow. Consequently, it is proposed that the free-surface vortex can be treated analogously to the Taylor-Couette flow permitting advanced conclusions to be drawn on its flow structure and the various states of free-surface vortex flow stability. |
---|