Cargando…

Baicalin modulates NF-κB and NLRP3 inflammasome signaling in porcine aortic vascular endothelial cells Infected by Haemophilus parasuis Causing Glässer’s disease

Haemophilus parasuis (H. parasuis) can cause vascular inflammatory injury, but the molecular basis of this effect remains unclear. In this study,we investigated the effect of the anti-inflammatory, anti-microbial and anti-oxidant agent, baicalin, on the nuclear factor (NF)-κB and NLRP3 inflammasome...

Descripción completa

Detalles Bibliográficos
Autores principales: Fu, Shulin, Liu, Huashan, Xu, Lei, Qiu, Yinsheng, Liu, Yu, Wu, Zhongyuan, Ye, Chun, Hou, Yongqing, Hu, Chien-An Andy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770393/
https://www.ncbi.nlm.nih.gov/pubmed/29339754
http://dx.doi.org/10.1038/s41598-018-19293-2
Descripción
Sumario:Haemophilus parasuis (H. parasuis) can cause vascular inflammatory injury, but the molecular basis of this effect remains unclear. In this study,we investigated the effect of the anti-inflammatory, anti-microbial and anti-oxidant agent, baicalin, on the nuclear factor (NF)-κB and NLRP3 inflammasome signaling pathway in pig primary aortic vascular endothelial cells. Activation of the NF-κB and NLRP3 inflammasome signaling pathway was induced in H. parasuis-infected cells. However, baicalin reduced the production of reactive oxygen species, apoptosis, and activation of the NF-κB and NLRP3 inflammasome signaling pathway in infected cells. These results revealed that baicalin can inhibit H. parasuis-induced inflammatory responses in porcine aortic vascular endothelial cells, and may thus offer a novel strategy for controlling and treating H. parasuis infection. Furthermore, the results suggest that piglet primary aortic vascular endothelial cells may provide an experimental model for future studies of H. parasuis infection.