Cargando…
Robust Exponential Memory in Hopfield Networks
The Hopfield recurrent neural network is a classical auto-associative model of memory, in which collections of symmetrically coupled McCulloch–Pitts binary neurons interact to perform emergent computation. Although previous researchers have explored the potential of this network to solve combinatori...
Autores principales: | Hillar, Christopher J., Tran, Ngoc M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770423/ https://www.ncbi.nlm.nih.gov/pubmed/29340803 http://dx.doi.org/10.1186/s13408-017-0056-2 |
Ejemplares similares
-
Novel local learning rule for neural adaptation fits Hopfield memory networks efficiently and optimally
por: Hillar, Chris, et al.
Publicado: (2013) -
Hidden Hypergraphs, Error-Correcting Codes, and Critical Learning in Hopfield Networks
por: Hillar, Christopher, et al.
Publicado: (2021) -
A New Criterion for Exponential Stability of a Class of Hopfield Neural Network with Time-Varying Delay Based on Gronwall's Inequality
por: Guo, Faming, et al.
Publicado: (2021) -
Modern Hopfield Networks for graph embedding
por: Liang, Yuchen, et al.
Publicado: (2022) -
Hopfield neural network model for explaining double dissociation in semantic memory impairment
por: Asakawa, Shin-ichi, et al.
Publicado: (2013)