Cargando…
Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification
Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into ac...
Autores principales: | Rueckauer, Bodo, Lungu, Iulia-Alexandra, Hu, Yuhuang, Pfeiffer, Michael, Liu, Shih-Chii |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770641/ https://www.ncbi.nlm.nih.gov/pubmed/29375284 http://dx.doi.org/10.3389/fnins.2017.00682 |
Ejemplares similares
-
Real-time classification and sensor fusion with a spiking deep belief network
por: O'Connor, Peter, et al.
Publicado: (2013) -
Evaluation of Event-Based Algorithms for Optical Flow with Ground-Truth from Inertial Measurement Sensor
por: Rueckauer, Bodo, et al.
Publicado: (2016) -
Cough event classification by pretrained deep neural network
por: Liu, Jia-Ming, et al.
Publicado: (2015) -
Real-Time Edge Neuromorphic Tasting From Chemical Microsensor Arrays
por: LeBow, Nicholas, et al.
Publicado: (2021) -
An in-silico framework for modeling optimal control of neural systems
por: Rueckauer, Bodo, et al.
Publicado: (2023)