Cargando…

Recent Progress in Single‐Crystalline Perovskite Research Including Crystal Preparation, Property Evaluation, and Applications

Organic–inorganic lead halide perovskites are promising optoelectronic materials resulting from their significant light absorption properties and unique long carrier dynamics, such as a long carrier lifetime, carrier diffusion length, and high carrier mobility. These advantageous properties have all...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Yucheng, Yang, Zhou, Liu, Shengzhong (Frank)
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770672/
https://www.ncbi.nlm.nih.gov/pubmed/29375973
http://dx.doi.org/10.1002/advs.201700471
Descripción
Sumario:Organic–inorganic lead halide perovskites are promising optoelectronic materials resulting from their significant light absorption properties and unique long carrier dynamics, such as a long carrier lifetime, carrier diffusion length, and high carrier mobility. These advantageous properties have allowed for the utilization of lead halide perovskite materials in solar cells, LEDs, photodetectors, lasers, etc. To further explore their potential, intrinsic properties should be thoroughly investigated. Single crystals with few defects are the best candidates to disclose a variety of interesting and important properties of these materials, ultimately, showing the increased importance of single‐crystalline perovskite research. In this review, recent progress on the crystallization, investigation, and primary device applications of single‐crystalline perovskites are summarized and analyzed. Further improvements in device design and preparation are also discussed.