Cargando…
ir-HSP: Improved Recognition of Heat Shock Proteins, Their Families and Sub-types Based On g-Spaced Di-peptide Features and Support Vector Machine
Heat shock proteins (HSPs) play a pivotal role in cell growth and variability. Since conventional approaches are expensive and voluminous protein sequence information is available in the post-genomic era, development of an automated and accurate computational tool is highly desirable for prediction...
Autores principales: | Meher, Prabina K., Sahu, Tanmaya K., Gahoi, Shachi, Rao, Atmakuri R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770798/ https://www.ncbi.nlm.nih.gov/pubmed/29379521 http://dx.doi.org/10.3389/fgene.2017.00235 |
Ejemplares similares
-
HRGPred: Prediction of herbicide resistant genes with k-mer nucleotide compositional features and support vector machine
por: Meher, Prabina Kumar, et al.
Publicado: (2019) -
nifPred: Proteome-Wide Identification and Categorization of Nitrogen-Fixation Proteins of Diaztrophs Based on Composition-Transition-Distribution Features Using Support Vector Machine
por: Meher, Prabina K., et al.
Publicado: (2018) -
funbarRF: DNA barcode-based fungal species prediction using multiclass Random Forest supervised learning model
por: Meher, Prabina Kumar, et al.
Publicado: (2019) -
Prediction of donor splice sites using random forest with a new sequence encoding approach
por: Meher, Prabina Kumar, et al.
Publicado: (2016) -
Predicting antimicrobial peptides with improved accuracy by incorporating the compositional, physico-chemical and structural features into Chou’s general PseAAC
por: Meher, Prabina Kumar, et al.
Publicado: (2017)