Cargando…

Disentangling pectic homogalacturonan and rhamnogalacturonan-I polysaccharides: Evidence for sub-populations in fruit parenchyma systems

The matrix polysaccharides of plant cell walls are diverse and variable sets of polymers influencing cell wall, tissue and organ properties. Focusing on the relatively simple parenchyma tissues of four fruits – tomato, aubergine, strawberry and apple – we have dissected cell wall matrix polysacchari...

Descripción completa

Detalles Bibliográficos
Autores principales: Cornuault, Valérie, Posé, Sara, Knox, J. Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier Applied Science Publishers 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5770856/
https://www.ncbi.nlm.nih.gov/pubmed/29291850
http://dx.doi.org/10.1016/j.foodchem.2017.11.025
Descripción
Sumario:The matrix polysaccharides of plant cell walls are diverse and variable sets of polymers influencing cell wall, tissue and organ properties. Focusing on the relatively simple parenchyma tissues of four fruits – tomato, aubergine, strawberry and apple – we have dissected cell wall matrix polysaccharide contents using sequential solubilisation and antibody-based approaches with a focus on pectic homogalacturonan (HG) and rhamnogalacturonan-I (RG-I). Epitope detection in association with anion-exchange chromatography analysis indicates that in all cases solubilized polymers include spectra of HG molecules with unesterified regions that are separable from methylesterified HG domains. In highly soluble fractions, RG-I domains exist in both HG-associated and non-HG-associated forms. Soluble xyloglucan and pectin-associated xyloglucan components were detected in all fruits. Aubergine glycans contain abundant heteroxylan epitopes, some of which are associated with both pectin and xyloglucan. These profiles of polysaccharide heterogeneity provide a basis for future studies of more complex cell and tissue systems.