Cargando…

A simple prediction model to estimate obstructive coronary artery disease

BACKGROUND: A simple noninvasive model to predict obstructive coronary artery disease (OCAD) may promote risk stratification and reduce the burden of coronary artery disease (CAD). This study aimed to develop pre-procedural, noninvasive prediction models that better estimate the probability of OCAD...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Shiqun, Liu, Yong, Islam, Sheikh Mohammed Shariful, Yao, Hua, Zhou, Yingling, Chen, Ji-yan, Li, Qiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5771201/
https://www.ncbi.nlm.nih.gov/pubmed/29338684
http://dx.doi.org/10.1186/s12872-018-0745-0
Descripción
Sumario:BACKGROUND: A simple noninvasive model to predict obstructive coronary artery disease (OCAD) may promote risk stratification and reduce the burden of coronary artery disease (CAD). This study aimed to develop pre-procedural, noninvasive prediction models that better estimate the probability of OCAD among patients with suspected CAD undergoing elective coronary angiography (CAG). METHODS: We included 1262 patients, who had reliable Framingham risk variable data, in a cohort without known CAD from a prospective registry of patients referred for elective CAG. We investigated pre-procedural OCAD (≥50% stenosis in at least one major coronary vessel based on CAG) predictors. RESULTS: A total of 945 (74.9%) participants had OCAD. The final modified Framingham scoring (MFS) model consisted of anemia, high-sensitivity C-reactive protein, left ventricular ejection fraction, and five Framingham factors (age, sex, total and high-density lipoprotein cholesterol, and hypertension). Bootstrap method (1000 times) revealed that the model demonstrated a good discriminative power (c statistic, 0.729 ± 0.0225; 95% CI, 0.69–0.77). MFS provided adequate goodness of fit (P = 0.43) and showed better performance than Framingham score (c statistic, 0.703 vs. 0.521; P < 0.001) in predicting OCAD, thereby identifying patients with high risks for OCAD (risk score ≥ 27) with ≥70% predictive value in 68.8% of subjects (range, 37.2–87.3% for low [≤17] and very high [≥41] risk scores). CONCLUSION: Our data suggested that the simple MFS risk stratification tool, which is available in most primary-level clinics, showed good performance in estimating the probability of OCAD in relatively stable patients with suspected CAD; nevertheless, further validation is needed. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s12872-018-0745-0) contains supplementary material, which is available to authorized users.