Cargando…

Highly effective and chemically stable surface enhanced Raman scattering substrates with flower-like 3D Ag-Au hetero-nanostructures

We demonstrated flower-like 3D Ag-Au hetero-nanostructures on an indium tin oxide glass (ITO glass) for surface enhanced Raman scattering (SERS) applications. The flower-like 3D Ag nanostructures were obtained through electrodeposition with liquid crystalline soft template which is simple, controlla...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Ying, Yang, Chengliang, Xue, Bin, Peng, Zenghui, Cao, Zhaoliang, Mu, Quanquan, Xuan, Li
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772549/
https://www.ncbi.nlm.nih.gov/pubmed/29343742
http://dx.doi.org/10.1038/s41598-018-19165-9
Descripción
Sumario:We demonstrated flower-like 3D Ag-Au hetero-nanostructures on an indium tin oxide glass (ITO glass) for surface enhanced Raman scattering (SERS) applications. The flower-like 3D Ag nanostructures were obtained through electrodeposition with liquid crystalline soft template which is simple, controllable and cost effective. The flower-like 3D Ag-Au hetero-nanostructures were further fabricated by galvanic replacement reaction of gold (III) chloride trihydrate (HAuCl(4)·3H(2)O) solution and flower-like Ag. The flower-like Ag-Au hetero-nanostructure exhibited stronger SERS effects and better chemical stability compared with flower-like Ag nanostructure. The localized surface plasmon resonance (LSPR) spectra, field emission scanning electron microscope (FESEM) photos and Ag-Au ratios were studied which show that the surface morphology and shape of the flower-like Ag-Au hetero-nanostructure play significant roles in enhancing SERS. The flower-like 3D Ag-Au hetero-nanostructures fabricated by electrodeposition in liquid crystalline template and galvanic replacement reaction are simple, cheap, controllable and chemical stable. It is a good candidate for applications in SERS detection and imaging.