Cargando…

Fast Image Edge Detection based on Faber Schauder Wavelet and Otsu Threshold

Edge detection is a critical stage in many computer vision systems, such as image segmentation and object detection. As it is difficult to detect image edges with precision and with low complexity, it is appropriate to find new methods for edge detection. In this paper, we take advantage of Faber Sc...

Descripción completa

Detalles Bibliográficos
Autores principales: Azeroual, Assma, Afdel, Karim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772748/
https://www.ncbi.nlm.nih.gov/pubmed/29387817
http://dx.doi.org/10.1016/j.heliyon.2017.e00485
Descripción
Sumario:Edge detection is a critical stage in many computer vision systems, such as image segmentation and object detection. As it is difficult to detect image edges with precision and with low complexity, it is appropriate to find new methods for edge detection. In this paper, we take advantage of Faber Schauder Wavelet (FSW) and Otsu threshold to detect edges in a multi-scale way with low complexity, since the extrema coefficients of this wavelet are located on edge points and contain only arithmetic operations. First, the image is smoothed using bilateral filter depending on noise estimation. Second, the FSW extrema coefficients are selected based on Otsu threshold. Finally, the edge points are linked using a predictive edge linking algorithm to get the image edges. The effectiveness of the proposed method is supported by the experimental results which prove that our method is faster than many competing state-of-the-art approaches and can be used in real-time applications.