Cargando…
Effects of Grb2-associated binding protein 2-specific siRNA on the migration and invasion of MG-63 osteosarcoma cells
To investigate the association between the expression of growth factor receptor binding protein 2-associated binding protein 2 (Gab2) in human osteosarcoma as well as the effects of Gab2 on invasion and metastasis, human MG-63 osteosarcoma cells were transfected with small interfering (si)RNA plasmi...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
D.A. Spandidos
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5772958/ https://www.ncbi.nlm.nih.gov/pubmed/29422967 http://dx.doi.org/10.3892/ol.2017.7375 |
Sumario: | To investigate the association between the expression of growth factor receptor binding protein 2-associated binding protein 2 (Gab2) in human osteosarcoma as well as the effects of Gab2 on invasion and metastasis, human MG-63 osteosarcoma cells were transfected with small interfering (si)RNA plasmid. Gab2 protein and mRNA expression levels were detected using western blotting and reverse transcription-polymerase chain reaction, respectively. The cell migration and invasion abilities were detected using in vitro chemotaxis and invasion assays, respectively, following siRNA vector expression. Gab2 was markedly expressed in MG-63 cells. The Gab2 protein and mRNA expression levels of the cells transfected with Gab2 siRNA (siGab2/MG-63) were reduced compared with those of the cells transfected with scrambled siRNA (Scr/MG-63). The chemotaxis assay demonstrated that the migration capacity of siGab2/MG-63 cells induced by 10 µg/l epidermal growth factor, was significantly reduced compared with that of the MG-63 and Scr/MG-63 cells (P<0.01). In comparison with Scr/MG-63 and MG-63 cells, a reduced number of siGab2/MG-63 cells invaded the Matrigel matrix, demonstrating that the in vitro invasion capacity was significantly decreased (P<0.01). Decreasing Gab2 expression levels using siRNA interference inhibited the migration and invasion ability of human MG-63 osteosarcoma cells. |
---|