Cargando…

Seasonally timed treatment programs for Ascaris lumbricoides to increase impact—An investigation using mathematical models

There is clear empirical evidence that environmental conditions can influence Ascaris spp. free-living stage development and host reinfection, but the impact of these differences on human infections, and interventions to control them, is variable. A new model framework reflecting four key stages of...

Descripción completa

Detalles Bibliográficos
Autores principales: Davis, Emma L., Danon, Leon, Prada, Joaquín M., Gunawardena, Sharmini A., Truscott, James E., Vlaminck, Johnny, Anderson, Roy M., Levecke, Bruno, Morgan, Eric R, Hollingsworth, T. Deirdre
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773001/
https://www.ncbi.nlm.nih.gov/pubmed/29346383
http://dx.doi.org/10.1371/journal.pntd.0006195
Descripción
Sumario:There is clear empirical evidence that environmental conditions can influence Ascaris spp. free-living stage development and host reinfection, but the impact of these differences on human infections, and interventions to control them, is variable. A new model framework reflecting four key stages of the A. lumbricoides life cycle, incorporating the effects of rainfall and temperature, is used to describe the level of infection in the human population alongside the environmental egg dynamics. Using data from South Korea and Nigeria, we conclude that settings with extreme fluctuations in rainfall or temperature could exhibit strong seasonal transmission patterns that may be partially masked by the longevity of A. lumbricoides infections in hosts; we go on to demonstrate how seasonally timed mass drug administration (MDA) could impact the outcomes of control strategies. For the South Korean setting the results predict a comparative decrease of 74.5% in mean worm days (the number of days the average individual spend infected with worms across a 12 month period) between the best and worst MDA timings after four years of annual treatment. The model found no significant seasonal effect on MDA in the Nigerian setting due to a narrower annual temperature range and no rainfall dependence. Our results suggest that seasonal variation in egg survival and maturation could be exploited to maximise the impact of MDA in certain settings.