Cargando…
Cytotoxic T lymphocytes from cattle sharing the same MHC class I haplotype and immunized with live Theileria parva sporozoites differ in antigenic specificity
OBJECTIVES: The objective of this study was to assess whether cytotoxic T cells (CTL) generated by the live vaccine, known as “ITM Muguga cocktail”, which is used for the cattle disease East Cost fever (ECF) in Sub-Saharan Africa, showed a broad reactivity against many different strains of the causa...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773172/ https://www.ncbi.nlm.nih.gov/pubmed/29343295 http://dx.doi.org/10.1186/s13104-018-3145-8 |
Sumario: | OBJECTIVES: The objective of this study was to assess whether cytotoxic T cells (CTL) generated by the live vaccine, known as “ITM Muguga cocktail”, which is used for the cattle disease East Cost fever (ECF) in Sub-Saharan Africa, showed a broad reactivity against many different strains of the causative parasite Theileria parva. We also assessed whether immune responses were similar in cattle expressing the same MHC class I haplotypes. RESULTS: The antigenic specificity of CTL from MHC class I-matched cattle vaccinated with the Muguga cocktail were different. Three cattle of MHC class I haplotype A18, one A18/A19 and two haploidentical (A18v/A12) animals, showed differential recognition of autologous cells infected with a panel of T. parva isolates. This could have implications in the field where certain strains could break through the vaccine. Furthermore, neither of the haploidentical cattle recognized the CTL epitope (Tp1(214–224)), presented by the A18 haplotype, in contrast to the third animal, showing differences in immunodominance in animals of the same haplotype A18. This suggests that the CTL specificities following immunization with the Muguga cocktail can vary even between haploidentical individuals and that some parasite strains may break through immunity generated by the Muguga cocktail. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1186/s13104-018-3145-8) contains supplementary material, which is available to authorized users. |
---|