Cargando…

Improving the use of environmental diversity as a surrogate for species representation

The continuous p‐median approach to environmental diversity (ED) is a reliable way to identify sites that efficiently represent species. A recently developed maximum dispersion (maxdisp) approach to ED is computationally simpler, does not require the user to reduce environmental space to two dimensi...

Descripción completa

Detalles Bibliográficos
Autores principales: Albuquerque, Fabio, Beier, Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773334/
https://www.ncbi.nlm.nih.gov/pubmed/29375759
http://dx.doi.org/10.1002/ece3.3651
Descripción
Sumario:The continuous p‐median approach to environmental diversity (ED) is a reliable way to identify sites that efficiently represent species. A recently developed maximum dispersion (maxdisp) approach to ED is computationally simpler, does not require the user to reduce environmental space to two dimensions, and performed better than continuous p‐median for datasets of South African animals. We tested whether maxdisp performs as well as continuous p‐median for 12 datasets that included plants and other continents, and whether particular types of environmental variables produced consistently better models of ED. We selected 12 species inventories and atlases to span a broad range of taxa (plants, birds, mammals, reptiles, and amphibians), spatial extents, and resolutions. For each dataset, we used continuous p‐median ED and maxdisp ED in combination with five sets of environmental variables (five combinations of temperature, precipitation, insolation, NDVI, and topographic variables) to select environmentally diverse sites. We used the species accumulation index (SAI) to evaluate the efficiency of ED in representing species for each approach and set of environmental variables. Maxdisp ED represented species better than continuous p‐median ED in five of 12 biodiversity datasets, and about the same for the other seven biodiversity datasets. Efficiency of ED also varied with type of variables used to define environmental space, but no particular combination of variables consistently performed best. We conclude that maxdisp ED performs at least as well as continuous p‐median ED, and has the advantage of faster and simpler computation. Surprisingly, using all 38 environmental variables was not consistently better than using subsets of variables, nor did any subset emerge as consistently best or worst; further work is needed to identify the best variables to define environmental space. Results can help ecologists and conservationists select sites for species representation and assist in conservation planning.