Cargando…
A deep auto-encoder model for gene expression prediction
BACKGROUND: Gene expression is a key intermediate level that genotypes lead to a particular trait. Gene expression is affected by various factors including genotypes of genetic variants. With an aim of delineating the genetic impact on gene expression, we build a deep auto-encoder model to assess ho...
Autores principales: | Xie, Rui, Wen, Jia, Quitadamo, Andrew, Cheng, Jianlin, Shi, Xinghua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773895/ https://www.ncbi.nlm.nih.gov/pubmed/29219072 http://dx.doi.org/10.1186/s12864-017-4226-0 |
Ejemplares similares
-
An integrated network of microRNA and gene expression in ovarian cancer
por: Quitadamo, Andrew, et al.
Publicado: (2015) -
Road-Type Classification with Deep AutoEncoder
por: Molefe, Mohale E., et al.
Publicado: (2023) -
Deep Auto-Encoder and Deep Forest-Assisted Failure Prognosis for Dynamic Predictive Maintenance Scheduling
por: Yu, Hui, et al.
Publicado: (2021) -
Epistasis analysis of microRNAs on pathological stages in colon cancer based on an Empirical Bayesian Elastic Net method
por: Wen, Jia, et al.
Publicado: (2017) -
Colorectal Cancer Prediction Based on Weighted Gene Co-Expression Network Analysis and Variational Auto-Encoder
por: Ai, Dongmei, et al.
Publicado: (2020)