Cargando…

Oxymatrine inhibits non–small cell lung cancer via suppression of EGFR signaling pathway

Epidermal growth factor receptor (EGFR) plays a crucial role in human non–small cell lung cancer (NSCLC) tumorigenesis. In this study, oxymatrine was identified as an EGFR signaling pathway inhibitor in NSCLC. Oxymatrine inhibited anchorage‐dependent and independent growth of NSCLC cell lines but ha...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Wei, Yu, Xinfang, Tan, Shiming, Liu, Wenbin, Zhou, Li, Liu, Haidan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2017
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5773973/
https://www.ncbi.nlm.nih.gov/pubmed/29239135
http://dx.doi.org/10.1002/cam4.1269
Descripción
Sumario:Epidermal growth factor receptor (EGFR) plays a crucial role in human non–small cell lung cancer (NSCLC) tumorigenesis. In this study, oxymatrine was identified as an EGFR signaling pathway inhibitor in NSCLC. Oxymatrine inhibited anchorage‐dependent and independent growth of NSCLC cell lines but had no cytotoxicity in normal lung cells. We found that exposure to oxymatrine not only suppressed the activity of wild‐type EGFR but also inhibited the activation of exon 19 deletion and L858R/T790M mutated EGFR. Flow cytometry analysis suggested that oxymatrine‐induced cell cycle G0/G1 arrest was dependent on EGFR‐Akt signaling. Exogenous overexpression of Myr‐Akt rescued cyclin D1 expression in HCC827 cells. Moreover, oxymatrine prominently suppressed tumor growth in a xenograft mouse model. Thus, oxymatrine appears to be a novel therapeutic agent for NSCLC treatment.