Cargando…
Suppression of Arrhythmia by Enhancing Mitochondrial Ca(2+) Uptake in Catecholaminergic Ventricular Tachycardia Models
Cardiovascular disease-related deaths frequently arise from arrhythmias, but treatment options are limited due to perilous side effects of commonly used antiarrhythmic drugs. Cardiac rhythmicity strongly depends on cardiomyocyte Ca(2+) handling and prevalent cardiac diseases are causally associated...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2017
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774336/ https://www.ncbi.nlm.nih.gov/pubmed/29354781 http://dx.doi.org/10.1016/j.jacbts.2017.06.008 |
_version_ | 1783293739926552576 |
---|---|
author | Schweitzer, Maria K. Wilting, Fabiola Sedej, Simon Dreizehnter, Lisa Dupper, Nathan J. Tian, Qinghai Moretti, Alessandra My, Ilaria Kwon, Ohyun Priori, Silvia G. Laugwitz, Karl-Ludwig Storch, Ursula Lipp, Peter Breit, Andreas Mederos y Schnitzler, Michael Gudermann, Thomas Schredelseker, Johann |
author_facet | Schweitzer, Maria K. Wilting, Fabiola Sedej, Simon Dreizehnter, Lisa Dupper, Nathan J. Tian, Qinghai Moretti, Alessandra My, Ilaria Kwon, Ohyun Priori, Silvia G. Laugwitz, Karl-Ludwig Storch, Ursula Lipp, Peter Breit, Andreas Mederos y Schnitzler, Michael Gudermann, Thomas Schredelseker, Johann |
author_sort | Schweitzer, Maria K. |
collection | PubMed |
description | Cardiovascular disease-related deaths frequently arise from arrhythmias, but treatment options are limited due to perilous side effects of commonly used antiarrhythmic drugs. Cardiac rhythmicity strongly depends on cardiomyocyte Ca(2+) handling and prevalent cardiac diseases are causally associated with perturbations in intracellular Ca(2+) handling. Therefore, intracellular Ca(2+) transporters are lead candidate structures for novel and safer antiarrhythmic therapies. Mitochondria and mitochondrial Ca(2+) transport proteins are important regulators of cardiac Ca(2+) handling. Here, the authors evaluated the potential of pharmacological activation of mitochondrial Ca(2+) uptake for the treatment of cardiac arrhythmia. To this aim, the authors tested substances that enhance mitochondrial Ca(2+) uptake for their ability to suppress arrhythmia in a murine model for ryanodine receptor 2 (RyR2)-mediated catecholaminergic polymorphic ventricular tachycardia (CPVT) in vitro and in vivo and in induced pluripotent stem cell-derived cardiomyocytes from a CPVT patient. In freshly isolated cardiomyocytes of RyR2(R4496C/WT) mice efsevin, a synthetic agonist of the voltage-dependent anion channel 2 (VDAC2) in the outer mitochondrial membrane, prevented the formation of diastolic Ca(2+) waves and spontaneous action potentials. The antiarrhythmic effect of efsevin was abolished by blockade of the mitochondrial Ca(2+) uniporter (MCU), but could be reproduced using the natural MCU activator kaempferol. Both mitochondrial Ca(2+) uptake enhancers (MiCUps), efsevin and kaempferol, significantly reduced episodes of stress-induced ventricular tachycardia in RyR2(R4496C/WT) mice in vivo and abolished diastolic, arrhythmogenic Ca(2+) events in human iPSC-derived cardiomyocytes. These results highlight an immediate potential of enhanced mitochondrial Ca(2+) uptake to suppress arrhythmogenic events in experimental models of CPVT and establish MiCUps as promising pharmacological tools for the treatment and prevention of Ca(2+)-triggered arrhythmias such as CPVT. |
format | Online Article Text |
id | pubmed-5774336 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2017 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-57743362018-01-19 Suppression of Arrhythmia by Enhancing Mitochondrial Ca(2+) Uptake in Catecholaminergic Ventricular Tachycardia Models Schweitzer, Maria K. Wilting, Fabiola Sedej, Simon Dreizehnter, Lisa Dupper, Nathan J. Tian, Qinghai Moretti, Alessandra My, Ilaria Kwon, Ohyun Priori, Silvia G. Laugwitz, Karl-Ludwig Storch, Ursula Lipp, Peter Breit, Andreas Mederos y Schnitzler, Michael Gudermann, Thomas Schredelseker, Johann JACC Basic Transl Sci PRECLINICAL RESEARCH Cardiovascular disease-related deaths frequently arise from arrhythmias, but treatment options are limited due to perilous side effects of commonly used antiarrhythmic drugs. Cardiac rhythmicity strongly depends on cardiomyocyte Ca(2+) handling and prevalent cardiac diseases are causally associated with perturbations in intracellular Ca(2+) handling. Therefore, intracellular Ca(2+) transporters are lead candidate structures for novel and safer antiarrhythmic therapies. Mitochondria and mitochondrial Ca(2+) transport proteins are important regulators of cardiac Ca(2+) handling. Here, the authors evaluated the potential of pharmacological activation of mitochondrial Ca(2+) uptake for the treatment of cardiac arrhythmia. To this aim, the authors tested substances that enhance mitochondrial Ca(2+) uptake for their ability to suppress arrhythmia in a murine model for ryanodine receptor 2 (RyR2)-mediated catecholaminergic polymorphic ventricular tachycardia (CPVT) in vitro and in vivo and in induced pluripotent stem cell-derived cardiomyocytes from a CPVT patient. In freshly isolated cardiomyocytes of RyR2(R4496C/WT) mice efsevin, a synthetic agonist of the voltage-dependent anion channel 2 (VDAC2) in the outer mitochondrial membrane, prevented the formation of diastolic Ca(2+) waves and spontaneous action potentials. The antiarrhythmic effect of efsevin was abolished by blockade of the mitochondrial Ca(2+) uniporter (MCU), but could be reproduced using the natural MCU activator kaempferol. Both mitochondrial Ca(2+) uptake enhancers (MiCUps), efsevin and kaempferol, significantly reduced episodes of stress-induced ventricular tachycardia in RyR2(R4496C/WT) mice in vivo and abolished diastolic, arrhythmogenic Ca(2+) events in human iPSC-derived cardiomyocytes. These results highlight an immediate potential of enhanced mitochondrial Ca(2+) uptake to suppress arrhythmogenic events in experimental models of CPVT and establish MiCUps as promising pharmacological tools for the treatment and prevention of Ca(2+)-triggered arrhythmias such as CPVT. Elsevier 2017-11-08 /pmc/articles/PMC5774336/ /pubmed/29354781 http://dx.doi.org/10.1016/j.jacbts.2017.06.008 Text en © 2017 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | PRECLINICAL RESEARCH Schweitzer, Maria K. Wilting, Fabiola Sedej, Simon Dreizehnter, Lisa Dupper, Nathan J. Tian, Qinghai Moretti, Alessandra My, Ilaria Kwon, Ohyun Priori, Silvia G. Laugwitz, Karl-Ludwig Storch, Ursula Lipp, Peter Breit, Andreas Mederos y Schnitzler, Michael Gudermann, Thomas Schredelseker, Johann Suppression of Arrhythmia by Enhancing Mitochondrial Ca(2+) Uptake in Catecholaminergic Ventricular Tachycardia Models |
title | Suppression of Arrhythmia by Enhancing Mitochondrial Ca(2+) Uptake in Catecholaminergic Ventricular Tachycardia Models |
title_full | Suppression of Arrhythmia by Enhancing Mitochondrial Ca(2+) Uptake in Catecholaminergic Ventricular Tachycardia Models |
title_fullStr | Suppression of Arrhythmia by Enhancing Mitochondrial Ca(2+) Uptake in Catecholaminergic Ventricular Tachycardia Models |
title_full_unstemmed | Suppression of Arrhythmia by Enhancing Mitochondrial Ca(2+) Uptake in Catecholaminergic Ventricular Tachycardia Models |
title_short | Suppression of Arrhythmia by Enhancing Mitochondrial Ca(2+) Uptake in Catecholaminergic Ventricular Tachycardia Models |
title_sort | suppression of arrhythmia by enhancing mitochondrial ca(2+) uptake in catecholaminergic ventricular tachycardia models |
topic | PRECLINICAL RESEARCH |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774336/ https://www.ncbi.nlm.nih.gov/pubmed/29354781 http://dx.doi.org/10.1016/j.jacbts.2017.06.008 |
work_keys_str_mv | AT schweitzermariak suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT wiltingfabiola suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT sedejsimon suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT dreizehnterlisa suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT duppernathanj suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT tianqinghai suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT morettialessandra suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT myilaria suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT kwonohyun suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT priorisilviag suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT laugwitzkarlludwig suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT storchursula suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT lipppeter suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT breitandreas suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT mederosyschnitzlermichael suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT gudermannthomas suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels AT schredelsekerjohann suppressionofarrhythmiabyenhancingmitochondrialca2uptakeincatecholaminergicventriculartachycardiamodels |