Cargando…
Extension of the viral ecology in humans using viral profile hidden Markov models
When human samples are sequenced, many assembled contigs are “unknown”, as conventional alignments find no similarity to known sequences. Hidden Markov models (HMM) exploit the positions of specific nucleotides in protein-encoding codons in various microbes. The algorithm HMMER3 implements HMM using...
Autores principales: | Bzhalava, Zurab, Hultin, Emilie, Dillner, Joakim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774701/ https://www.ncbi.nlm.nih.gov/pubmed/29351302 http://dx.doi.org/10.1371/journal.pone.0190938 |
Ejemplares similares
-
ViraMiner: Deep learning on raw DNA sequences for identifying viral genomes in human samples
por: Tampuu, Ardi, et al.
Publicado: (2019) -
Machine Learning for detection of viral sequences in human metagenomic datasets
por: Bzhalava, Zurab, et al.
Publicado: (2018) -
Viruses in case series of tumors: Consistent presence in different cancers in the same subject
por: Arroyo Mühr, Laila Sara, et al.
Publicado: (2017) -
Deep sequencing extends the diversity of human papillomaviruses in human skin
por: Bzhalava, Davit, et al.
Publicado: (2014) -
Uncovering ecological state dynamics with hidden Markov models
por: McClintock, Brett T., et al.
Publicado: (2020)