Cargando…
Automatic labeling of molecular biomarkers of immunohistochemistry images using fully convolutional networks
This paper addresses the problem of quantifying biomarkers in multi-stained tissues based on the color and spatial information of microscopy images of the tissue. A deep learning-based method that can automatically localize and quantify the regions expressing biomarker(s) in any selected area on a w...
Autores principales: | Sheikhzadeh, Fahime, Ward, Rabab K., van Niekerk, Dirk, Guillaud, Martial |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774709/ https://www.ncbi.nlm.nih.gov/pubmed/29351281 http://dx.doi.org/10.1371/journal.pone.0190783 |
Ejemplares similares
-
Quantification of confocal fluorescence microscopy for the detection of cervical intraepithelial neoplasia
por: Sheikhzadeh, Fahime, et al.
Publicado: (2015) -
Automatic Detection of Cone Photoreceptors With Fully Convolutional Networks
por: Hamwood, Jared, et al.
Publicado: (2019) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Wang, Chuanbo, et al.
Publicado: (2020) -
Automatic seizure detection based on imaged-EEG signals through fully convolutional networks
por: Gómez, Catalina, et al.
Publicado: (2020) -
Fully automatic acute ischemic lesion segmentation in DWI using convolutional neural networks
por: Chen, Liang, et al.
Publicado: (2017)