Cargando…
Labeling for Big Data in radiation oncology: The Radiation Oncology Structures ontology
PURPOSE: Leveraging Electronic Health Records (EHR) and Oncology Information Systems (OIS) has great potential to generate hypotheses for cancer treatment, since they directly provide medical data on a large scale. In order to gather a significant amount of patients with a high level of clinical det...
Autores principales: | Bibault, Jean-Emmanuel, Zapletal, Eric, Rance, Bastien, Giraud, Philippe, Burgun, Anita |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774757/ https://www.ncbi.nlm.nih.gov/pubmed/29351341 http://dx.doi.org/10.1371/journal.pone.0191263 |
Ejemplares similares
-
Integrating Multimodal Radiation Therapy Data into i2b2
por: Zapletal, Eric, et al.
Publicado: (2018) -
Editorial: Machine Learning With Radiation Oncology Big Data
por: Deng, Jun, et al.
Publicado: (2018) -
Review of radiomics and radiogenomics and big data in radiation oncology
por: Zheng, Dandan
Publicado: (2020) -
The big data effort in radiation oncology: Data mining or data farming?
por: Mayo, Charles S., et al.
Publicado: (2016) -
Learning radiation oncology in Europe: Results of the ESTRO multidisciplinary survey
por: Bibault, Jean-Emmanuel, et al.
Publicado: (2018)