Cargando…
An approach to localization for ensemble-based data assimilation
Localization techniques are commonly used in ensemble-based data assimilation (e.g., the Ensemble Kalman Filter (EnKF) method) because of insufficient ensemble samples. They can effectively ameliorate the spurious long-range correlations between the background and observations. However, localization...
Autores principales: | Wang, Bin, Liu, Juanjuan, Liu, Li, Xu, Shiming, Huang, Wenyu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774775/ https://www.ncbi.nlm.nih.gov/pubmed/29351306 http://dx.doi.org/10.1371/journal.pone.0191088 |
Ejemplares similares
-
Data assimilation: the ensemble Kalman filter
por: Evensen, Geir
Publicado: (2007) -
Inference in epidemiological agent-based models using ensemble-based data assimilation
por: Cocucci, Tadeo Javier, et al.
Publicado: (2022) -
Ensemble optimal interpolation for adjoint-free biogeochemical data assimilation
por: Mattern, Jann Paul, et al.
Publicado: (2023) -
Development of an ensemble Kalman filter data assimilation system for the Venusian atmosphere
por: Sugimoto, Norihiko, et al.
Publicado: (2017) -
Ensemble-based kernel learning for a class of data assimilation problems with imperfect forward simulators
por: Luo, Xiaodong
Publicado: (2019)