Cargando…

Brain functional BOLD perturbation modelling for forward fMRI and inverse mapping

PURPOSE: To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. METHODS: A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ(0) +...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Zikuan, Robinson, Jennifer, Calhoun, Vince
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774799/
https://www.ncbi.nlm.nih.gov/pubmed/29351339
http://dx.doi.org/10.1371/journal.pone.0191266
Descripción
Sumario:PURPOSE: To computationally separate dynamic brain functional BOLD responses from static background in a brain functional activity for forward fMRI signal analysis and inverse mapping. METHODS: A brain functional activity is represented in terms of magnetic source by a perturbation model: χ = χ(0) +δχ, with δχ for BOLD magnetic perturbations and χ(0) for background. A brain fMRI experiment produces a timeseries of complex-valued images (T2* images), whereby we extract the BOLD phase signals (denoted by δP) by a complex division. By solving an inverse problem, we reconstruct the BOLD δχ dataset from the δP dataset, and the brain χ distribution from a (unwrapped) T2* phase image. Given a 4D dataset of task BOLD fMRI, we implement brain functional mapping by temporal correlation analysis. RESULTS: Through a high-field (7T) and high-resolution (0.5mm in plane) task fMRI experiment, we demonstrated in detail the BOLD perturbation model for fMRI phase signal separation (P + δP) and reconstructing intrinsic brain magnetic source (χ and δχ). We also provided to a low-field (3T) and low-resolution (2mm) task fMRI experiment in support of single-subject fMRI study. Our experiments show that the δχ-depicted functional map reveals bidirectional BOLD χ perturbations during the task performance. CONCLUSIONS: The BOLD perturbation model allows us to separate fMRI phase signal (by complex division) and to perform inverse mapping for pure BOLD δχ reconstruction for intrinsic functional χ mapping. The full brain χ reconstruction (from unwrapped fMRI phase) provides a new brain tissue image that allows to scrutinize the brain tissue idiosyncrasy for the pure BOLD δχ response through an automatic function/structure co-localization.