Cargando…
Representability of algebraic topology for biomolecules in machine learning based scoring and virtual screening
This work introduces a number of algebraic topology approaches, including multi-component persistent homology, multi-level persistent homology, and electrostatic persistence for the representation, characterization, and description of small molecules and biomolecular complexes. In contrast to the co...
Autores principales: | Cang, Zixuan, Mu, Lin, Wei, Guo-Wei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5774846/ https://www.ncbi.nlm.nih.gov/pubmed/29309403 http://dx.doi.org/10.1371/journal.pcbi.1005929 |
Ejemplares similares
-
TopologyNet: Topology based deep convolutional and multi-task neural networks for biomolecular property predictions
por: Cang, Zixuan, et al.
Publicado: (2017) -
Interactions Between Representation Ttheory, Algebraic Topology and Commutative Algebra
por: Herbera, Dolors, et al.
Publicado: (2016) -
Topological representations of crystalline compounds for the machine-learning prediction of materials properties
por: Jiang, Yi, et al.
Publicado: (2021) -
Representation and searching of biomolecules
por: Durant, Joeseph L, et al.
Publicado: (2010) -
Performance of machine-learning scoring functions in structure-based virtual screening
por: Wójcikowski, Maciej, et al.
Publicado: (2017)