Cargando…
Stable Sparse Classifiers Identify qEEG Signatures that Predict Learning Disabilities (NOS) Severity
In this paper, we present a novel methodology to solve the classification problem, based on sparse (data-driven) regressions, combined with techniques for ensuring stability, especially useful for high-dimensional datasets and small samples number. The sensitivity and specificity of the classifiers...
Autores principales: | Bosch-Bayard, Jorge, Galán-García, Lídice, Fernandez, Thalia, Lirio, Rolando B., Bringas-Vega, Maria L., Roca-Stappung, Milene, Ricardo-Garcell, Josefina, Harmony, Thalía, Valdes-Sosa, Pedro A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5775224/ https://www.ncbi.nlm.nih.gov/pubmed/29379411 http://dx.doi.org/10.3389/fnins.2017.00749 |
Ejemplares similares
-
Electroencephalographic characterization of subgroups of children with learning disorders
por: Roca-Stappung, Milene, et al.
Publicado: (2017) -
Working Memory in Children with Learning Disorders: An EEG Power Spectrum Analysis
por: Martínez-Briones, Benito J., et al.
Publicado: (2020) -
Stable Sparse Classifiers predict cognitive impairment from gait patterns
por: Aznielle-Rodríguez, Tania, et al.
Publicado: (2022) -
qEEG mediates the effect of infection severity on COVID-induced brain dysfunction
por: Jin, Y., et al.
Publicado: (2023) -
Resting State Healthy EEG: The First Wave of the Cuban Normative Database
por: Bosch-Bayard, Jorge, et al.
Publicado: (2020)